题目描述

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,
而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 
1:(x,y)<==>(x+1,y) 
2:(x,y)<==>(x,y+1) 
3:(x,y)<==>(x+1,y+1) 
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,
开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击
这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,
才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的
狼的数量要最小。因为狼还要去找喜羊羊麻烦.

输入

第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值. 
第二部分共N-1行,每行M个数,表示纵向道路的权值. 
第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 
输入文件保证不超过10M

输出

输出一个整数,表示参与伏击的狼的最小数量.

题意就是割开一部分边试起点和终点不连通且割开边的边权最小,显然是最小割(转成最大流做)。但要注意的是,这里的边是双向边,所以回流边可以直接把流量赋成正向边边权,这样就不用建双向边了(就是不用建正向v流量边,反向0流量边再建反向v流量边,正向0流量边;直接建正向v流量边和反向v流量边)。这样的好处是一开始回流边就可以增广。

最后附上代码。

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
int next[6000001];
int to[6000001];
int val[6000001];
int head[6000001];
int tot=1;
int q[6000001];
int n,m;
int S,T;
int x;
int ans;
int d[6000001];
const int INF=0x3f3f3f3f;
void add(int x,int y,int v)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
val[tot]=v;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
val[tot]=v;
}
bool bfs(int S,int T)
{
int r=0;
int l=0;
memset(d,-1,sizeof(d));
q[r++]=S;
d[S]=0;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&val[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]==-1)
{
return false;
}
else
{
return true;
}
}
int dfs(int x,int flow)
{
if(x==T)
{
return flow;
}
int now_flow;
int used=0;
for(int i=head[x];i;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i]!=0)
{
now_flow=dfs(to[i],min(flow-used,val[i]));
val[i]-=now_flow;
val[i^1]+=now_flow;
used+=now_flow;
if(now_flow==flow)
{
return flow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,0x3f3f3f);
}
}
int main()
{
scanf("%d%d",&n,&m);
S=1;
T=n*m;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m-1;j++)
{
scanf("%d",&x);
add((i-1)*m+j,(i-1)*m+j+1,x);
}
}
for(int i=1;i<=n-1;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%d",&x);
add((i-1)*m+j,i*m+j,x);
}
}
for(int i=1;i<=n-1;i++)
{
for(int j=1;j<=m-1;j++)
{
scanf("%d",&x);
add((i-1)*m+j,i*m+j+1,x);
}
}
dinic();
printf("%d",ans);
return 0;
}

BZOJ1001[BeiJing2006]狼抓兔子——最小割的更多相关文章

  1. BZOJ1001: [BeiJing2006]狼抓兔子 [最小割 | 对偶图+spfa]

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 19528  Solved: 4818[Submit][ ...

  2. bzoj1001: [BeiJing2006]狼抓兔子 -- 最小割

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec  Memory Limit: 162 MB Description 现在小朋友们最喜欢的"喜羊羊与灰太狼 ...

  3. BZOJ1001[BeiJing2006]狼抓兔子最小割網絡流

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  4. BZOJ1001 [BeiJing2006]狼抓兔子 最小割 对偶图 最短路

    原文链接http://www.cnblogs.com/zhouzhendong/p/8686871.html 题目传送门 - BZOJ1001 题意 长成上面那样的网格图求最小割. $n,m\leq ...

  5. BZOJ1001: [BeiJing2006]狼抓兔子 (最小割转最短路)

    浅析最大最小定理在信息学竞赛中的应用---周东 ↑方法介绍 对于一个联通的平面图G(满足欧拉公式) 在s和t间新连一条边e; 然后建立一个原图的对偶图G*,G*中每一个点对应原图中每一个面,每一条边对 ...

  6. 【bzoj1001】[BeiJing2006]狼抓兔子 最小割+对偶图+最短路

    题目描述 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: ...

  7. BZOJ 1001: [BeiJing2006]狼抓兔子 最小割

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1001 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓 ...

  8. [bzoj 1001][Beijing2006]狼抓兔子 (最小割+对偶图+最短路)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  9. bzoj1001/luogu4001 狼抓兔子 (最小割/平面图最小割转对偶图最短路)

    平面图转对偶图:先在原图中加一个s->t的边,然后对每个面建一个点,对每条分隔两个面的边加一条连接这两个面对应点的边,边权等于原边权. 然后从刚才加的s->t分割出来的两面对应的两个点跑最 ...

随机推荐

  1. three.js - 动画 图形统计帧频 dat.GUI

    运行一把: 代码解释: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  2. (推荐)Skyline调用WMTS服务接口

    文章地址 http://blog.csdn.net/chaiqi/article/details/9302373 供大家学习参考.

  3. 1-Android开发验证码(使用第三方Mob,注册)

    http://www.mob.com/ 注册以后 可以直接放在 可以下载到手机里面试一下了 后续就不截图了 补充: 自定义签名

  4. flask seesion组件

    一.简介     flask中session组件可分为内置的session组件还有第三方flask-session组件,内置的session组件功能单一,而第三方的flask-sessoin可支持re ...

  5. 阿里云telnet 3306端口失败

    在阿里云的服务器上安装了MySQL, 然后远程访问总是不通. 查询了很久,排查思路如下: 检查mysql是否启动 检查本机3306端口是否处于监听状态 检查阿里云控制台是否开启了安全限制 检查mysq ...

  6. [Oracle]In-Memory的Join Group 位于内存的何处?

    In-Memory的Join Group 的数据字典位于内存的何处? 有客户问到,使用Oracle 的In-Memory功能时,如果用到了 Join Group,那么这些这些Join Group,位于 ...

  7. 【适配整理】Android 7.0 调取系统相机崩溃解决android.os.FileUriExposedException

    一.写在前面 最近由于廖子尧忙于自己公司的事情和 OkGo (一款专注于让网络请求更简单的网络框架) ,故让LZ 接替维护 ImagePicker(一款支持单.多选.旋转和裁剪的图片选择器),也是处理 ...

  8. Flask-sqlalchemy 语法总结

    Flask-sqlalchemy 语法总结 ** DDLdb.create_all() :创建实体表db.drop_all(): 删除表 1)插入表Db.session.add(user) #user ...

  9. JDK的一个关于stack的小bug

    在一个项目中,使用了一个java.util.Stack,总所周知,栈是先入后出的,那么遍历其中元素的时候,也应该按照这个顺序遍历才对,但是实际情况确不是,以下是测试代码. Stack stack = ...

  10. svn代码发版的脚本分享

    背景:开发将其代码放到svn里面,如何将修改后存放到svn里的代码发布到线上?简单做法:写个shell脚本,用于代码发版.比如开发的代码存放svn的路径是:svn://112.168.19.120/h ...