原文地址:http://www.mbtmag.com/blog/2017/04/artificial-intelligence-making-it-work-industrial-companies?cmpid=horizontalcontent

作者:Pete Eppele is Senior Vice President of Products and Science at Zilliant. B2-AI company

AI in B2B

In B2B, it’s all about expanding existing customer relationships versus the more transactional, customer acquisition focus we see in B2C. The introduction of Einstein has prompted organizations to think in new ways about how AI can help improve their customer relationships. CRM, CPQ and other similar technologies are an essential foundation to improving seller efficiency. Adding a layer of intelligence (more specifically, artificial intelligence) can rapidly accelerate the value and power delivered through a company’s technology stack. For B2B industrial companies, the implications are exciting, prompting company leaders to ask critical questions such as:

  • What if AI helped us know every customer as well as our best customer?
  • What if AI empowered every sales person to perform like our top performer?
  • What if AI enabled my sellers to sell the entire product portfolio?
  • What if AI provided deal-specific prices that are most likely to result in a win?
  • What if AI could bring sales person smarts to e-commerce interactions?

Industrial companies need AI to deliver action-oriented insights to sales teams so they can drive deep, long-term customer relationships by anticipating customer needs, fighting off competitive threats, growing wallet share in accounts, and quoting consistently across all sales channels. Existing AI applications in B2B focus on retention, growth and flexible pricing that empowers companies to respond to complex dynamics such as inflation, deflation, volatile cost conditions, extreme competition, regional factors and much more. AI applications in B2B truly offer a massive opportunity to optimize the value of every customer relationship and interaction.

Is it Truly AI? Some Pointers

There’s incredible buzz around AI now, which means nearly every solution provider will be touting that they deliver AI, machine learning or deep learning. Be wary of providers that are new to the game and don’t have a deep history in B2B steeped in delivering artificial intelligence to solve the unique problems outlined above. Providers with this rich background paired with best-in-class technologies are the ones to look for. Make sure the output of the AI model is actionable, meaning it’s delivered seamlessly into your existing CPQ, e-commerce platform, CRM, home grown tool, ERP, or otherwise. You want guidance to flow into the applications that your reps use every day. From an architecture standpoint, multi-tenant SaaS is critical and the benefits are vast. From total-cost-of-ownership, to seamless upgrades, to everything in between, multi-tenant SaaS should be on your list of criteria. Most importantly, however, is having the right domain knowledge and expertise in place to build out the guidance model. In other words, to get the best results from AI models, it’s critical for data scientists to have the necessary domain expertise.

【转】机器学习在B2B的应用的更多相关文章

  1. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  2. 机器学习在SAP Cloud for Customer中的应用

    关于机器学习这个话题,我相信我这个公众号1500多位关注者里,一定有很多朋友的水平比Jerry高得多.如果您看过我以前两篇文章,您就会发现,我对机器学习仅仅停留在会使用API的层面上. 使用Java程 ...

  3. .NET平台开源项目速览(13)机器学习组件Accord.NET框架功能介绍

    Accord.NET Framework是在AForge.NET项目的基础上封装和进一步开发而来.因为AForge.NET更注重与一些底层和广度,而Accord.NET Framework更注重与机器 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. BAT“搅局”B2B市场,CIO们准备好了吗?

    "CIO必须灵活构建其所在企业的IT系统,深入业务,以应对日新月异的数字化业务环境."   BAT军团"搅局"B2B市场,CIO们准备好了吗? 庞大的企业级市场 ...

  6. 借助亚马逊S3和RapidMiner将机器学习应用到文本挖掘

    本挖掘典型地运用了机器学习技术,例如聚类,分类,关联规则,和预测建模.这些技术揭示潜在内容中的意义和关系.文本发掘应用于诸如竞争情报,生命科学,客户呼声,媒体和出版,法律和税收,法律实施,情感分析和趋 ...

  7. Android开发学习之路-机器学习库(图像识别)、百度翻译

    对于机器学习也不是了解的很深入,今天无意中在GitHub看到一个star的比较多的库,就用着试一试,效果也还行.比是可能比不上TensorFlow的,但是在Android上用起来比较简单,毕竟Tens ...

  8. 快消品迎来B2B元年,行业将如何变革?

    一年接近尾声,又到了年终总结的时候,宴会厅里传来各种激情澎湃的演讲,有的行业遍地开花.欢声笑语不绝于耳:有的行业却没能迎来"昨夜东风",只能嗟叹"不堪回首".2 ...

  9. 【NLP】基于机器学习角度谈谈CRF(三)

    基于机器学习角度谈谈CRF 作者:白宁超 2016年8月3日08:39:14 [摘要]:条件随机场用于序列标注,数据分割等自然语言处理中,表现出很好的效果.在中文分词.中文人名识别和歧义消解等任务中都 ...

随机推荐

  1. Response的Content-Type一览

    文件扩展名 Content-Type(Mime-Type) 文件扩展名 Content-Type(Mime-Type) .* application/octet-stream .tif image/t ...

  2. Percona XtraDB Cluster Strict Mode(PXC 5.7)

    在Percona XtraDB Cluster集群架构中,为了避免多主节点导致的数据异常,或者说一些不被支持的特性引发的数据不一致的情形,PXC集群可以通过配置pxc_strict_mode这个变量来 ...

  3. CentOS安装mysql源码包

    1.# cd /usr/local/src 2.上传mysql.tar.gz文件 3.# tar -zxvf mysql-5.6.36-linux-glibc2.5-x86_64.tar.gz 4.# ...

  4. 反序列化和序列化xml使用反射处理节点的属性

    当一个xml中有大量的属性XmlAttribute需要序列化和反序列化,通常需要复制粘贴大量的如下代码,显得很丑陋,而且容易出错: XmlAttribute attr = Doc.CreateAttr ...

  5. rabbitmq (三) 发布/订阅

    rabbitmq的目的并不是让生产者把消息直接发到队列里面去, 这样不能实现解耦的目的,也不利于程序的扩展. 所以就有交换机(exchanges)的概念. 交换机有几种类型:direct, topic ...

  6. springboot2.0动态多数据源切换

    摘要:springboot1.x到springboot2.0配置变化有一点变化,网上关于springboot2.0配置多数据源的资料也比较少,为了让大家配置多数据源从springboot1.x升级到s ...

  7. 199. Spring Boot JNDI:这是虾米?

      [视频&交流平台] àSpringBoot视频:http://t.cn/R3QepWG à SpringCloud视频:http://t.cn/R3QeRZc à Spring Boot源 ...

  8. 面试回顾——kafka

    关于消息队列的使用场景:https://www.cnblogs.com/linjiqin/p/5720865.html kafka: Topic Kafka将消息种子(Feed)分门别类 每一类的消息 ...

  9. ---mingw Linux交叉编译给Window的工具

    https://arrayfire.com/cross-compile-to-windows-from-linux/

  10. T-SQL中CTE表 with关键字

    Select字句在逻辑上是SQL语句最后进行处理的最后一步,所以,以下查询会发生错误: SELECT YEAR(OrderDate) AS OrderYear, COUNT(DISTINCT Cust ...