专题 查找与排序的Java代码实现(一)
专题 查找与排序的Java代码实现(一)
查找(Searching)
线性查找(linear search)
属于无序查找算法,适合于存储结构为顺序存储或链接存储的线性表。
基本思想:从数据结构线形表的一端开始,顺序扫描,依次将扫描到的结点关键字与给定值k相比较,若相等则表示查找成功;若扫描结束仍没有找到关键字等于k的结点,表示查找失败。
时间复杂度:O(n)
具体代码:
//-------------------------------------------------------------------------
// Searches the specified array of objects using a linear search 线性查找
// algorithm. Returns null if the target is not found.
//-------------------------------------------------------------------------
public static Comparable linearSearch (Comparable[] data,
Comparable target) {
Comparable result = null;
int index = 0;
while (result == null && index < data.length){
if (data[index].compareTo(target) == 0)
result = data[index];
index++;
}
return result;
}
二分查找(binary search)
属于有序查找算法,元素必须是有序的,如果是无序的则要先进行排序操作。
基本思想:用给定值k先与中间结点的关键字比较,中间结点把线形表分成两个子表,若相等则查找成功;若不相等,再根据k与该中间结点关键字的比较结果确定下一步查找哪个子表,这样递归进行,直到查找到或查找结束发现表中没有这样的结点。
时间复杂度:O(log2n)
具体代码:
//--------------------------------------------------------------------------
// Searches the specified array of objects using a binary search 二分查找
// algorithm. Returns null if the target is not found.
//--------------------------------------------------------------------------
public static Comparable BinarySearch(Comparable[] data,
Comparable target){
Comparable result = null;
int first = 0, last = data.length-1, mid;
while (result == null && first <= last){
mid = (first + last) / 2; // determine midpoint
if (data[mid].compareTo(target)==0)
result = data[mid];
else
if (data[mid].compareTo(target) == 0)
result = mid - 1;
else
first = mid + 1;
}
return result;
}
排序(Sorting)
选择排序(selection sort)
基本思想:对一个数列进行排序时,每次从剩余的序列中挑选出最小的记录,放到序列开始位置,以此类推,直到数列的所有数字都已经放到最终位置为止。
时间复杂度:O(n^2)
具体代码:
//-----------------------------------------------------------------
// Sorts the specified array of integers using the selection
// sort algorithm.
//-----------------------------------------------------------------
public static void selectionSort (Comparable[] data) {
int min;
for (int index = 0; index < data.length-1; index++) {
min = index;
for (int scan = index+1; scan < data.length; scan++)
if (data[scan].compareTo(data[min]) < 0)
min = scan;
swap (data, min, index);
}
}
//-----------------------------------------------------------------
// Swaps two elements in the specified array.
//-----------------------------------------------------------------
private static void swap (Comparable[] data, int index1, int index2)
{
Comparable temp = data[index1];
data[index1] = data[index2];
data[index2] = temp;
}
插入排序(insertion sort)
基本思想:每次从数列中取一个还没有取出过的数,并按照大小关系插入到已经取出的数中使得已经取出的数仍然有序。
时间复杂度:O(n^2)
具体代码:
//-----------------------------------------------------------------
// Sorts the specified array of objects using an insertion
// sort algorithm.
//-----------------------------------------------------------------
public static void insertionSort (Comparable[] data)
{
for (int index = 1; index < data.length; index++)
{
Comparable key = data[index];
int position = index;
// Shift larger values to the right
while (position > 0 && data[position-1].compareTo(key) > 0)
{
data[position] = data[position-1];
position--;
}
data[position] = key;
}
}
冒泡排序(bubble sort)
属于交换排序
基本思想:经过一趟冒泡排序之后,序列中最大的记录到了序列最后,而较小的记录位置均向前移动了
时间复杂度:O(n^2)
具体代码:
//-----------------------------------------------------------------
// Sorts the specified array of objects using a bubble sort
// algorithm.
//-----------------------------------------------------------------
public static void bubbleSort (Comparable[] data)
{
int position, scan;
for (position = data.length - 1; position >= 0; position--)
{
for (scan = 0; scan <= position - 1; scan++)
if (data[scan].compareTo(data[scan+1]) > 0)
swap (data, scan, scan+1);
}
}
快速排序(quick sort)
属于交换排序,快速排序是对冒泡排序的一种改进。
基本思想:将待排序序列分成两部分,其中一部分的记录都比另一部分的记录小,随后分别对这两部分再分成两部分,使一部分的记录都小于另一部分,如此反复最终使整个序列最终有序。
时间复杂度:O(n*log2n)
具体代码:
//-----------------------------------------------------------------
// Sorts the specified array of objects using the quick sort
// algorithm.
//-----------------------------------------------------------------
public static void quickSort (Comparable[] data, int min, int max)
{
int pivot;
if (min < max)
{
pivot = partition (data, min, max); // make partitions
quickSort(data, min, pivot-1); // sort left partition
quickSort(data, pivot+1, max); // sort right partition
}
}
//-----------------------------------------------------------------
// Creates the partitions needed for quick sort.
//-----------------------------------------------------------------
private static int partition (Comparable[] data, int min, int max)
{
// Use first element as the partition value
Comparable partitionValue = data[min];
int left = min;
int right = max;
while (left < right)
{
// Search for an element that is > the partition element
while (data[left].compareTo(partitionValue) <= 0 && left < right)
left++;
// Search for an element that is < the partitionelement
while (data[right].compareTo(partitionValue) > 0)
right--;
if (left < right)
swap(data, left, right);
}
// Move the partition element to its final position
swap (data, min, right);
return right;
}
归并排序(merge sort)
基本思想:重复调用归并算法,首先将单个记录视为一个有序序列,然后不断将相邻的两个有序序列合并得到新的有序序列,如此反复,最后得到一个整体有序的序列
时间复杂度:O(n*log2n)
具体代码:
//-----------------------------------------------------------------
// Sorts the specified array of objects using the merge sort
// algorithm.
//-----------------------------------------------------------------
public static void mergeSort (Comparable[] data, int min, int max)
{
if (min < max)
{
int mid = (min + max) / 2;
mergeSort (data, min, mid);
mergeSort (data, mid+1, max);
merge (data, min, mid, max);
}
}
//-----------------------------------------------------------------
// Sorts the specified array of objects using the merge sort
// algorithm.
//-----------------------------------------------------------------
public static void merge (Comparable[] data, int first, int mid,
int last)
{
Comparable[] temp = new Comparable[data.length];
int first1 = first, last1 = mid; // endpoints of first subarray
int first2 = mid+1, last2 = last; // endpoints of second subarray
int index = first1; // next index open in temp array
// Copy smaller item from each subarray into temp until one
// of the subarrays is exhausted
while (first1 <= last1 && first2 <= last2)
{
if (data[first1].compareTo(data[first2]) < 0)
{
temp[index] = data[first1];
first1++;
}
else
{
temp[index] = data[first2];
first2++;
}
index++;
}
// Copy remaining elements from first subarray, if any
while (first1 <= last1)
{
temp[index] = data[first1];
first1++;
index++;
}
// Copy remaining elements from second subarray, if any
while (first2 <= last2)
{
temp[index] = data[first2];
first2++;
index++;
}
// Copy merged data into original array
for (index = first; index <= last; index++)
data[index] = temp[index];
}
专题 查找与排序的Java代码实现(一)的更多相关文章
- 排序算法Java代码实现(一)—— 选择排序
以下几篇随笔都是记录的我实现八大排序的代码,主要是贴出代码吧,讲解什么的都没有,主要是为了方便我自己复习,哈哈,如果看不明白,也不要说我坑哦! 本片分为两部分代码: 常用方法封装 排序算法里需要频繁使 ...
- 排序算法Java代码实现(三)—— 插入排序 和 希尔排序
因为希尔排序的核心思想是插入排序,所以本篇将两篇排序一起记录 本篇内容: 插入排序 希尔排序 (一)插入排序 算法思想: 把n个待排序的元素看成一个有序表和一个无序表,开始时有序表中只有一个元素,无序 ...
- 排序算法Java代码实现(四)—— 归并排序
本篇内容: 归并排序 归并排序 算法思想: 将两个或两个以上的有序表合并成一个新的有序表, 即把待排序序列分成若干个子序列,每个子序列是有序的,然后在把有序子序列合并为整体有序序列. 此算法分为两步: ...
- 排序算法Java代码实现(六)—— 堆排序
本片内容: 堆排序 堆排序 最大堆: 二叉堆是完全二叉树或者是近似完全二叉树, 当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆.(父节点大于任何一个子节点) 算法思想: 把n个元素建立最大 ...
- 排序算法Java代码实现(五)—— 快速排序
本篇内容: 快速排序 快速排序 算法思想: 通过一趟排序将要排序的数据分割成独立的两部分, 其中一部分的所有数据都比另外一部分的所有数据都要小, 然后再按此方法对这两部分数据分别进行快速排序, 整个排 ...
- Java - 选择性排序 PHP || Java 代码对比
int [] array1 = {1,3,5,7,9,10,2,15,154,10,2,188,200};//定义一个数组,内容为混乱大小 int index = 0;//定义一个最大值或最小值的位置 ...
- 八大排序算法java代码
1.冒泡排序 public static void main(String[] args) { int[] arr = {1,4,2,9,5,7,6}; System.out.println(&quo ...
- 排序算法Java代码实现(二)—— 冒泡排序
本篇内容: 冒泡排序 冒泡排序 算法思想: 冒泡排序的原理是:从左到右,相邻元素进行比较. 每次比较一轮,就会找到序列中最大的一个或最小的一个.这个数就会从序列的最右边冒出来. 代码实现: /** * ...
- 20172302 《Java软件结构与数据结构》实验三:查找与排序实验报告
课程:<Java软件结构与数据结构> 班级: 1723 姓名: 侯泽洋 学号:20172302 实验教师:王志强老师 实验日期:2018年11月19日 必修/选修: 必修 实验内容 (1) ...
随机推荐
- Maven用途
1.使用Maven编译项目,命令是:“mvncompile” 在命令行中,进入pom.xml所在目录,输入命令即可. 2.使用Maven清理项目,命令是:“mvnclean” 3.使用Maven测试项 ...
- 20155208徐子涵《网络对抗》Exp2 后门原理与实践
20155208徐子涵<网络对抗>Exp2 后门原理与实践 基础问题回答 (1)例举你能想到的一个后门进入到你系统中的可能方式? 答:当我们在非官方网站上下载软件时,后门极有可能会进入我们 ...
- 2018.4.27 java容器
一.容器的概念 在Java当中,如果有一个类专门用来存放其它类的对象,这个类就叫做容器,或者就叫做集合,集合就是将若干性质相同或相近的类对象组合在一起而形成的一个整体 二.容器与数组的关系 之所以需要 ...
- 使用vsftp服务传输文件
- day052 django第三天 url和视图
一.基本格式 from django.conf.urls import url from . import views #循环urlpatterns,找到对应的函数执行,匹配上一个路径就找到对应的函数 ...
- c++ CreateProcess调用dos命令
// test.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include <windows.h> #include &l ...
- DDR3初识
DDR3初识 选择2:1 ratio 意味用户总线宽度为DDR物理数据接口宽度的4倍.
- sequelize的get/post方法例子
定义两个model,一个给get的,一个给post的 var Sequelize = require('sequelize'); const DeviceNos = sequelize.define( ...
- 2017-2018-2 20165312 实验四《Android程序设计》实验报告
2017-2018-2 20165312 实验四<Android程序设计>实验报告 一.安装Android Studio并进行Hello world测试和调试程序 安装Android St ...
- shell循环(两个日期比较,改变某个特定日期来改变当前比较值)
需求:从当前时间前6个月开始执行某个语句,直到执行到当前日期的前一天. shell脚本如下: #!/bin/bash yesterday=`date -d -1day +%Y%m%d` sixmon ...