【BZOJ2287】【POJ Challenge】消失之物

Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

题解:做这种题的一般套路就是:不包含i的方案=总方案-包含i的方案
我们先求出总方案f[i],然后设g[i]为不包含i的方案,得到

g[i]=f[i]-f[i-w[i]]

但是发现f[i-w[i]]里可能也包含i,我们要将他们加回来,并以此类推

g[i]=f[i]-f[i-w[i]]+f[i-2*w[i]]-...

发现其实就是这样

g[i]=f[i]-g[i-w[i]]

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,m;
int f[2010],g[2010],w[2010];
int main()
{
int i,j,k;
scanf("%d%d",&n,&m);
f[0]=1;
for(i=1;i<=n;i++)
{
scanf("%d",&w[i]);
for(j=m;j>=w[i];j--) f[j]=(f[j]+f[j-w[i]])%10;
}
for(i=1;i<=n;i++)
{
for(j=0;j<w[i];j++) g[j]=f[j];
for(j=w[i];j<=m;j++) g[j]=(f[j]-g[j-w[i]]+10)%10;
for(j=1;j<=m;j++) printf("%d",g[j]);
printf("\n");
}
return 0;
}

【BZOJ2287】【POJ Challenge】消失之物 背包动规的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  3. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  6. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. vijos1431[noip2007]守望者的逃离(背包动规)

    描述 恶魔猎手尤迪安野心勃勃,他背叛了暗夜精灵,率领深藏在海底的娜迦族企图叛变.守望者 在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上.为了杀死守望者,尤迪安开始对这 个荒岛施咒,这座岛很快就会 ...

  9. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

随机推荐

  1. EF6 Code First 模式更新数据库架构

    定义好实体类和上下文类 在 Package Manager Console 输入以下命令 1.Enable-Migrations 启用数据迁移功能,该命令通常会在项目根目录下生成 Migrations ...

  2. GPU 编程入门到精通(四)之 GPU 程序优化

    博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识,鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程.有志同道合的小伙伴 ...

  3. 《转》CentOS7 安装MongoDB 3.0server (3.0的优势)

    1.下载&安装 MongoDB 3.0 正式版本号公布!这标志着 MongoDB 数据库进入了一个全新的发展阶段,提供强大.灵活并且易于管理的数据库管理系统.MongoDB宣称.3.0新版本号 ...

  4. mysql 插入 详解

    表创建好后,就可以往里插入记录了,插入记录的基本语法如下: INSERT INTO tablename (field1,field2,……fieldn) VALUES(value1,value2,…… ...

  5. CentOS Linux防火墙配置及关闭

    CentOS 配置防火墙操作实例(启.停.开.闭端口): 注:防火墙的基本操作命令: 查询防火墙状态: [root@localhost ~]# service   iptables status< ...

  6. Selenium - Switch & Select Api

    一.多表单切换  driver.switch_to.frame() iframe  :直接将一个html 页面嵌入另一个html 页面中 switch_to.frame() 默认可以直接取表单的id ...

  7. MYSQL数据库的导出的几种方法

    mysql的数据导出几种方法   从网上找到一些问题是关于如何从MySQL中导出数据,以便用在本地或其它的数据库系统之上:以及 将现有数据导入MySQL数据库中. 数据导出 数据导出主要有以下几种方法 ...

  8. [转]__cdecl与__stdcall

    来自Programming Windows 5th Edition The WinMain function is given a type of WINAPI (as is every Window ...

  9. Vue 状态管理

    类flux状态管理的官方实现 由于多个状态分散的跨越在许多组件和交互间的各个角落,大型应用复杂度也经常逐渐增长. 为了解决这个问题,vue提供了vuex:我们有收到elm启发的状态管理库,vuex甚至 ...

  10. hadoop之mapreduce编程实例(系统日志初步清洗过滤处理)

    刚刚开始接触hadoop的时候,总觉得必须要先安装hadoop集群才能开始学习MR编程,其实并不用这样,当然如果你有条件有机器那最好是自己安装配置一个hadoop集群,这样你会更容易理解其工作原理.我 ...