[洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)
[洛谷P1029]最大公约数与最小公倍数问题
Description
输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数
条件:1.P,Q是正整数;2.要求P,Q以x0为最大公约数,以y0为最小公倍数.
试求:满足条件的所有可能的两个正整数的个数.
输入格式:二个正整数x0,y0
输出格式:一个数,表示求出满足条件的P,Q的个数
Solution
1.由最大公约数的定义我们得到:存在k1,k2∈R,使P=k1x0,Q =k2x0;
2.由LCM(a,b)GCD(a,b)=ab(LCM为两数小公倍数),可以得到:x0y0=PQ,带入k1,k2得:y0=k1k2x0,即k1*k2=y0/x0;
3.在本题中我们不妨设P<Q,即k1<k2,那么从1到floor(sqrt(y0/x0))穷举k1即可,判断条件为k1,k2互质;
4.由于k1,k2交换后扔为一组解,所以ans*=2;
5.对于x0=y0的情况,我们经过思考发现解应只有一组,所以要加上特判;
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int gcd(int a,int b){return b?gcd(b,a%b):a;} //GCD
int main(){
int x,y,k1,k2,n,ans=0;
scanf("%d%d",&x,&y);
if(x==y){ //特判
printf("1\n");
return 0;
}
if(y%x!=0){ //无解
printf("0\n");
return 0;
}
n=y/x;
for(k1=1;k1<=floor(sqrt(n));++k1){
if(n%k1==0){
k2=n/k1;
if(gcd(k1,k2)==1)ans++;
}
}
printf("%d\n",ans*2);
return 0;
}
辗转相除法求GCD(欧几里得算法)基础知识部分可以参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/8371664.html
[洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)的更多相关文章
- 洛谷P1029 最大公约数和最小公倍数问题 题解
题目链接:https://www.luogu.com.cn/problem/P1029 题目描述 输入 \(2\) 个正整数 \(x_0,y_0(2 \le x_0 \lt 100000,2 \le ...
- 洛谷——P1029 最大公约数和最小公倍数问题
P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...
- 洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]
P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1 ...
- 洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&&非学习区警告
题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...
- 洛谷P1029 最大公约数和最小公倍数问题
题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为 ...
- 洛谷P1029 最大公约数和最小公倍数问题 (简单数学题)
一直懒的写博客,直到感觉不写不总结没有半点进步,最后快乐(逼着)自己来记录蒟蒻被学弟学妹打压这一年吧... 题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le ...
- 洛谷 P1029 最大公约数和最小公倍数问题
有两种做法 一种是gcd与lcm相乘后就是两个数的乘积,枚举第一个数,算出第二数,看最大公约数是不是题目给的. 第二种就lcm/gcd的答案为两个互质的数相乘.然后就枚举有多少组互质的数相乘等于lcm ...
- 洛谷P1029 最小公约数和最大公倍数问题【数论】
题目:https://www.luogu.org/problemnew/show/P1029 题意: 给定两个数$x$和$y$,问能找到多少对数$P$$Q$,使得他们的最小公约数是$x$最大公倍数是$ ...
- 【数论】P1029 最大公约数和最小公倍数问题
题目链接 P1029 最大公约数和最小公倍数问题 思路 如果有两个数a和b,他们的gcd(a,b)和lcm(a,b)的乘积就等于ab. 也就是: ab=gcd(a,b)*lcm(a,b) 那么,接下来 ...
随机推荐
- 第七次java作业
interface Pet{public String getName();public String getColor();public int getAge();}class Cat imple ...
- 上传web端——个人项目
我用visual studio新建了一个web窗口,如图: 然后这里是系统自带的代码: [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile ...
- css3 flex属性flex-grow、flex-shrink、flex-basis学习笔记
最近在研究css3的flex.遇到的flex:1;这一块,很是很纠结,flex-grow.flex-shrink.flex-basis始终搞不清,最经搜集了大量的介绍,应该能算是明白了.网上大部分解释 ...
- postgis_LayerTransform
[转] postgis_LayerTransform 一个在postgis中结合中国国情,批量对数据进行加偏到百度坐标,高德谷歌的火星坐标,或者逆向纠偏 安装: 在postgresql-postgis ...
- spring cloud & dubbo
区别 来源(背景): Dubbo,是阿里巴巴服务化治理的核心框架,并被广泛应用于阿里巴巴集团的各成员站点. Spring Cloud,从命名我们就可以知道,它是Spring Source的产物,Spr ...
- Impala:新一代开源大数据分析引擎--转载
原文地址:http://www.parallellabs.com/2013/08/25/impala-big-data-analytics/ 文 / 耿益锋 陈冠诚 大数据处理是云计算中非常重要的问题 ...
- Appium自动化测试框架
1.在utils包中创建一个AppiumUtil类,这个类是对appium api进行封装的. 代码如下: package utils; import java.net.MalformedURLExc ...
- l洛谷 (水题)P4144 大河的序列
题目戳 Solution: 这题前面都是废话,关键的一句就是本题求的是序列中连续一段的相与值(&)+相或值(|)最大,然后对这个值进行快速幂取模.考虑到两个数相与最大能得到的就是这两个数中的最 ...
- 【JQuery】效果
一.前言 接着上一章事件,继续jQuery的学习. 二.内容 animate 执行css属性集的自定义动画 $(selector).animate(styles,speed,easing ...
- Jenkins远程代码执行漏洞检查(CVE-2017-1000353)
Jenkins的反序列化漏洞,攻击者使用该漏洞可以在被攻击服务器执行任意代码,漏洞利用不需要任何的权限 漏洞影响范围: 所有Jenkins主版本均受到影响(包括<=2.56版本)所有Jenkin ...