hadoop map端的超时参数
目前集群上某台机器卡住导致出现大量的Map端任务FAIL,当定位到具体的机器上时,无法ssh或进去后terminal中无响应,退出的相关信息如下:
[hadoop@xxx ~]$ Received disconnect from xxx: Timeout, your session not responding.
AttemptID:attempt_1413206225298_24177_m_000001_0 Timed out after 1200 secsContainer killed by the ApplicationMaster. Container killed on request. Exit code is 143
The number of milliseconds before a task will be terminated if it neither reads an input, writes an output, nor updates its status string. A value of 0 disables the timeout.
Map.Entry<TaskAttemptId, ReportTime> entry = iterator.next();
boolean taskTimedOut = (taskTimeOut > 0) &&
(currentTime > (entry.getValue().getLastProgress() + taskTimeOut)); if(taskTimedOut) {
// task is lost, remove from the list and raise lost event
iterator.remove();
eventHandler.handle(new TaskAttemptDiagnosticsUpdateEvent(entry
.getKey(), "AttemptID:" + entry.getKey().toString()
+ " Timed out after " + taskTimeOut / 1000 + " secs"));
eventHandler.handle(new TaskAttemptEvent(entry.getKey(),
TaskAttemptEventType.TA_TIMED_OUT));
}
public void progressing(TaskAttemptId attemptID) {
//only put for the registered attempts
//TODO throw an exception if the task isn't registered.
ReportTime time = runningAttempts.get(attemptID);
if(time != null) {
time.setLastProgress(clock.getTime());
}
}
Report progress
If your task reports no progress for 10 minutes (see the mapred.task.timeout
property) then it will be killed by Hadoop. Most tasks don’t encounter this situation since they report progress implicitly by reading input and writing output. However, some jobs which don’t process records in this way may fall foul of this behavior and have their tasks killed. Simulations are a good example, since they do a lot of CPU-intensive processing in each map and typically only write the result at the end of the computation. They should be written in such a way as to report progress on a regular basis (more frequently than every 10 minutes). This may be achieved in a number of ways:
- Call
setStatus()
onReporter
to set a human-readable description of
the task’s progress - Call
incrCounter()
onReporter
to increment a user counter - Call
progress()
onReporter
to tell Hadoop that your task is still there (and making progress)
但是,事情还没完,集群中会不定时地有任务卡死在某个点上导致任务无法继续下去:
"main" prio=10 tid=0x000000000293f000 nid=0x1e06 runnable [0x0000000041b20000]
java.lang.Thread.State: RUNNABLE
at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)
at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:228)
at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:81)
at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:87)
- locked <0x00000006e243c3f0> (a sun.nio.ch.Util$2)
- locked <0x00000006e243c3e0> (a java.util.Collections$UnmodifiableSet)
- locked <0x00000006e243c1a0> (a sun.nio.ch.EPollSelectorImpl)
at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:98)
at org.apache.hadoop.net.SocketIOWithTimeout$SelectorPool.select(SocketIOWithTimeout.java:335)
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:157)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
/now wait for socket to be ready.
int count = 0;
try {
count = selector.select(channel, ops, timeout);
} catch (IOException e) { //unexpected IOException.
closed = true;
throw e;
} if (count == 0) {
throw new SocketTimeoutException(timeoutExceptionString(channel,
timeout, ops));
}
Error: java.net.SocketTimeoutException: 70000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=xxx remote=/xxx]
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:118)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:1490)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.transfer(DFSOutputStream.java:962)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:930)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1031)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:823)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:475)
while (true) {
long start = (timeout == 0) ? 0 : Time.now();
key = channel.register(info.selector, ops);
ret = info.selector.select(timeout);
if (ret != 0) {
return ret;
} /* Sometimes select() returns 0 much before timeout for
* unknown reasons. So select again if required.
*/
if (timeout > 0) {
timeout -= Time.now() - start;
if (timeout <= 0) {
return 0;
}
} if (Thread.currentThread().isInterrupted()) {
throw new InterruptedIOException("Interruped while waiting for " +
"IO on channel " + channel +
". " + timeout +
" millis timeout left.");
}
}
java.nio.channels.Selector
public abstract int select(long timeout)
throws java.io.IOException
Selects a set of keys whose corresponding channels are ready for I/O operations.
This method performs a blocking selection operation. It returns only after at least one channel is selected, this selector's wakeup method is invoked, the current thread is interrupted, or the given timeout period expires, whichever comes first.
- 至少一个已经注册的Channel被选择,返回的就是被选择的Channel数量;
- Selector被中断;
- 给定的超时时间已到;
但是,这也没完,难道超时了不会重试?到底会重试几次?
经过继续分析,发现往下的堆栈中的DFSInputStream调用了readBuffer方法,可以看到retryCurrentNode在第一次失败后,将IOException捕获,会进行必要的重试操作,如果还是发生超时,并且找不到就将其加入黑名单作为失败的DataNode(可能下次不会进行重试?),并转移到另外的DataNode上(执行seekToNewSource方法),经过几次后才会将IOException真正抛出。
try {
return reader.doRead(blockReader, off, len, readStatistics);
} catch ( ChecksumException ce ) {
DFSClient.LOG.warn("Found Checksum error for "
+ getCurrentBlock() + " from " + currentNode
+ " at " + ce.getPos());
ioe = ce;
retryCurrentNode = false;
// we want to remember which block replicas we have tried
addIntoCorruptedBlockMap(getCurrentBlock(), currentNode,
corruptedBlockMap);
} catch ( IOException e ) {
if (!retryCurrentNode) {
DFSClient.LOG.warn("Exception while reading from "
+ getCurrentBlock() + " of " + src + " from "
+ currentNode, e);
}
ioe = e;
}
boolean sourceFound = false;
if (retryCurrentNode) {
/* possibly retry the same node so that transient errors don't
* result in application level failures (e.g. Datanode could have
* closed the connection because the client is idle for too long).
*/
sourceFound = seekToBlockSource(pos);
} else {
addToDeadNodes(currentNode);
sourceFound = seekToNewSource(pos);
}
if (!sourceFound) {
throw ioe;
}
retryCurrentNode = false;
}
hadoop map端的超时参数的更多相关文章
- hadoop的压缩解压缩,reduce端join,map端join
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...
- Hadoop on Mac with IntelliJ IDEA - 10 陆喜恒. Hadoop实战(第2版)6.4.1(Shuffle和排序)Map端 内容整理
下午对着源码看陆喜恒. Hadoop实战(第2版)6.4.1 (Shuffle和排序)Map端,发现与Hadoop 1.2.1的源码有些出入.下面作个简单的记录,方便起见,引用自书本的语句都用斜体表 ...
- Hadoop基础-Map端链式编程之MapReduce统计TopN示例
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...
- hadoop编程小技巧(1)---map端聚合
測试hadoop版本号:2.4 Map端聚合的应用场景:当我们仅仅关心全部数据中的部分数据时,而且数据能够放入内存中. 使用的优点:能够大大减小网络数据的传输量,提高效率: 一般编程思路:在Mapp ...
- hadoop mapreduce 端参数优化
在MapReduce执行过程中,特别是Shuffle阶段,尽量使用内存缓冲区存储数据,减少磁盘溢写次数:同时在作业执行过程中增加并行度,都能够显著提高系统性能,这也是配置优化的一个重要依据. 下面分别 ...
- (转)hadoop三个配置文件的参数含义说明
hadoop三个配置文件的参数含义说明 1 获取默认配置 配置hadoop,主要是配置core-site.xml,hdfs-site.xml,mapred-site.xml三个配 ...
- 我对Map端spill的理解
一.先看简单理解 对于hadoop的map端配置项"mapreduce.task.io.sort.mb"和"mapreduce.map.sort.spill.percen ...
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- Hadoop Map/Reduce教程
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...
随机推荐
- 在创建一个MVC控制器,显示运行所选代码生成器时出错(带读写,使用EF)
在创建一个MVC控制器,在Controllers文件夹选择添加->控制器,如下图: 显示运行所选代码生成器时出错 解决方法: 第一步:Install-Package Microsoft.aspn ...
- SpringInAction--Spring Web应用之SpringMvc 注解配置
Spring MVC 是当前Web服务器中常用的结构,今天就来学习这相关的知识,首先上图——Spring请求的时候所经历的坎坷之路: (书上原话,算是解释..) 在请求离开浏览器时① ,会带有用户所请 ...
- sar工具使用详细介绍
一:命令介绍:参考资料:http://linux.die.net/man/1/sar sar(System ActivityReporter系统活动情况报告)是目前Linux上最为全面的系统性能分析工 ...
- 一个好工具-everything-可以找到浏览器的所有缓存
下载路径http://www.voidtools.com/downloads/ 我用它来寻找浏览器缓存的google瓦片.
- 《利用Python进行数据分析》笔记---第2章--1880-2010年间全美婴儿姓名
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python ...
- Goroutine是如何工作的?
翻译原文链接 转帖/转载请注明出处英文原文链接 发表于2014/02/24 Go语言 如果你刚刚接触Go语言,或者说你并不理解“并发不等于并行”这句话的含义,那么Rob Pike的讲座值得一看(在yo ...
- [javascript][转载]jQuery获取Select选择的Text和 Value
原文地址: http://www.cnblogs.com/yaoshiyou/archive/2010/08/24/1806939.html http://www.cnblogs.com/SAL292 ...
- BZOJ5194: [Usaco2018 Feb]Snow Boots(排序&set)(可线段树优化)
5194: [Usaco2018 Feb]Snow Boots Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 102 Solved: 79[Subm ...
- WinForm窗体继承自定义的模板窗体出错
在开发Winform程序的时候,我们往往需要根据需要做一些自定义的控件模块,这样可以给系统模块重复利用,或者实现更好的效果等功能.而今天自定义一个窗体,然后子窗体继承的时候出现了一点问题. 问题: 在 ...
- mix deps HEX_HTTP_CONCURRENCY=1 HEX_HTTP_TIMEOUT=120 timeout
mix deps.get timeout 问题: If this happens consistently, adjust your concurrency and timeout setting ...