hadoop map端的超时参数
目前集群上某台机器卡住导致出现大量的Map端任务FAIL,当定位到具体的机器上时,无法ssh或进去后terminal中无响应,退出的相关信息如下:
[hadoop@xxx ~]$ Received disconnect from xxx: Timeout, your session not responding.
AttemptID:attempt_1413206225298_24177_m_000001_0 Timed out after 1200 secsContainer killed by the ApplicationMaster. Container killed on request. Exit code is 143
The number of milliseconds before a task will be terminated if it neither reads an input, writes an output, nor updates its status string. A value of 0 disables the timeout.
Map.Entry<TaskAttemptId, ReportTime> entry = iterator.next();
boolean taskTimedOut = (taskTimeOut > 0) &&
(currentTime > (entry.getValue().getLastProgress() + taskTimeOut)); if(taskTimedOut) {
// task is lost, remove from the list and raise lost event
iterator.remove();
eventHandler.handle(new TaskAttemptDiagnosticsUpdateEvent(entry
.getKey(), "AttemptID:" + entry.getKey().toString()
+ " Timed out after " + taskTimeOut / 1000 + " secs"));
eventHandler.handle(new TaskAttemptEvent(entry.getKey(),
TaskAttemptEventType.TA_TIMED_OUT));
}
public void progressing(TaskAttemptId attemptID) {
//only put for the registered attempts
//TODO throw an exception if the task isn't registered.
ReportTime time = runningAttempts.get(attemptID);
if(time != null) {
time.setLastProgress(clock.getTime());
}
}
Report progress
If your task reports no progress for 10 minutes (see the mapred.task.timeout
property) then it will be killed by Hadoop. Most tasks don’t encounter this situation since they report progress implicitly by reading input and writing output. However, some jobs which don’t process records in this way may fall foul of this behavior and have their tasks killed. Simulations are a good example, since they do a lot of CPU-intensive processing in each map and typically only write the result at the end of the computation. They should be written in such a way as to report progress on a regular basis (more frequently than every 10 minutes). This may be achieved in a number of ways:
- Call
setStatus()
onReporter
to set a human-readable description of
the task’s progress - Call
incrCounter()
onReporter
to increment a user counter - Call
progress()
onReporter
to tell Hadoop that your task is still there (and making progress)
但是,事情还没完,集群中会不定时地有任务卡死在某个点上导致任务无法继续下去:
"main" prio=10 tid=0x000000000293f000 nid=0x1e06 runnable [0x0000000041b20000]
java.lang.Thread.State: RUNNABLE
at sun.nio.ch.EPollArrayWrapper.epollWait(Native Method)
at sun.nio.ch.EPollArrayWrapper.poll(EPollArrayWrapper.java:228)
at sun.nio.ch.EPollSelectorImpl.doSelect(EPollSelectorImpl.java:81)
at sun.nio.ch.SelectorImpl.lockAndDoSelect(SelectorImpl.java:87)
- locked <0x00000006e243c3f0> (a sun.nio.ch.Util$2)
- locked <0x00000006e243c3e0> (a java.util.Collections$UnmodifiableSet)
- locked <0x00000006e243c1a0> (a sun.nio.ch.EPollSelectorImpl)
at sun.nio.ch.SelectorImpl.select(SelectorImpl.java:98)
at org.apache.hadoop.net.SocketIOWithTimeout$SelectorPool.select(SocketIOWithTimeout.java:335)
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:157)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
/now wait for socket to be ready.
int count = 0;
try {
count = selector.select(channel, ops, timeout);
} catch (IOException e) { //unexpected IOException.
closed = true;
throw e;
} if (count == 0) {
throw new SocketTimeoutException(timeoutExceptionString(channel,
timeout, ops));
}
Error: java.net.SocketTimeoutException: 70000 millis timeout while waiting for channel to be ready for read. ch : java.nio.channels.SocketChannel[connected local=xxx remote=/xxx]
at org.apache.hadoop.net.SocketIOWithTimeout.doIO(SocketIOWithTimeout.java:164)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:161)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:131)
at org.apache.hadoop.net.SocketInputStream.read(SocketInputStream.java:118)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at java.io.FilterInputStream.read(FilterInputStream.java:83)
at org.apache.hadoop.hdfs.protocolPB.PBHelper.vintPrefixed(PBHelper.java:1490)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.transfer(DFSOutputStream.java:962)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.addDatanode2ExistingPipeline(DFSOutputStream.java:930)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.setupPipelineForAppendOrRecovery(DFSOutputStream.java:1031)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.processDatanodeError(DFSOutputStream.java:823)
at org.apache.hadoop.hdfs.DFSOutputStream$DataStreamer.run(DFSOutputStream.java:475)
while (true) {
long start = (timeout == 0) ? 0 : Time.now();
key = channel.register(info.selector, ops);
ret = info.selector.select(timeout);
if (ret != 0) {
return ret;
} /* Sometimes select() returns 0 much before timeout for
* unknown reasons. So select again if required.
*/
if (timeout > 0) {
timeout -= Time.now() - start;
if (timeout <= 0) {
return 0;
}
} if (Thread.currentThread().isInterrupted()) {
throw new InterruptedIOException("Interruped while waiting for " +
"IO on channel " + channel +
". " + timeout +
" millis timeout left.");
}
}
java.nio.channels.Selector
public abstract int select(long timeout)
throws java.io.IOException
Selects a set of keys whose corresponding channels are ready for I/O operations.
This method performs a blocking selection operation. It returns only after at least one channel is selected, this selector's wakeup method is invoked, the current thread is interrupted, or the given timeout period expires, whichever comes first.
- 至少一个已经注册的Channel被选择,返回的就是被选择的Channel数量;
- Selector被中断;
- 给定的超时时间已到;
但是,这也没完,难道超时了不会重试?到底会重试几次?
经过继续分析,发现往下的堆栈中的DFSInputStream调用了readBuffer方法,可以看到retryCurrentNode在第一次失败后,将IOException捕获,会进行必要的重试操作,如果还是发生超时,并且找不到就将其加入黑名单作为失败的DataNode(可能下次不会进行重试?),并转移到另外的DataNode上(执行seekToNewSource方法),经过几次后才会将IOException真正抛出。
try {
return reader.doRead(blockReader, off, len, readStatistics);
} catch ( ChecksumException ce ) {
DFSClient.LOG.warn("Found Checksum error for "
+ getCurrentBlock() + " from " + currentNode
+ " at " + ce.getPos());
ioe = ce;
retryCurrentNode = false;
// we want to remember which block replicas we have tried
addIntoCorruptedBlockMap(getCurrentBlock(), currentNode,
corruptedBlockMap);
} catch ( IOException e ) {
if (!retryCurrentNode) {
DFSClient.LOG.warn("Exception while reading from "
+ getCurrentBlock() + " of " + src + " from "
+ currentNode, e);
}
ioe = e;
}
boolean sourceFound = false;
if (retryCurrentNode) {
/* possibly retry the same node so that transient errors don't
* result in application level failures (e.g. Datanode could have
* closed the connection because the client is idle for too long).
*/
sourceFound = seekToBlockSource(pos);
} else {
addToDeadNodes(currentNode);
sourceFound = seekToNewSource(pos);
}
if (!sourceFound) {
throw ioe;
}
retryCurrentNode = false;
}
hadoop map端的超时参数的更多相关文章
- hadoop的压缩解压缩,reduce端join,map端join
hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...
- Hadoop on Mac with IntelliJ IDEA - 10 陆喜恒. Hadoop实战(第2版)6.4.1(Shuffle和排序)Map端 内容整理
下午对着源码看陆喜恒. Hadoop实战(第2版)6.4.1 (Shuffle和排序)Map端,发现与Hadoop 1.2.1的源码有些出入.下面作个简单的记录,方便起见,引用自书本的语句都用斜体表 ...
- Hadoop基础-Map端链式编程之MapReduce统计TopN示例
Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...
- hadoop编程小技巧(1)---map端聚合
測试hadoop版本号:2.4 Map端聚合的应用场景:当我们仅仅关心全部数据中的部分数据时,而且数据能够放入内存中. 使用的优点:能够大大减小网络数据的传输量,提高效率: 一般编程思路:在Mapp ...
- hadoop mapreduce 端参数优化
在MapReduce执行过程中,特别是Shuffle阶段,尽量使用内存缓冲区存储数据,减少磁盘溢写次数:同时在作业执行过程中增加并行度,都能够显著提高系统性能,这也是配置优化的一个重要依据. 下面分别 ...
- (转)hadoop三个配置文件的参数含义说明
hadoop三个配置文件的参数含义说明 1 获取默认配置 配置hadoop,主要是配置core-site.xml,hdfs-site.xml,mapred-site.xml三个配 ...
- 我对Map端spill的理解
一.先看简单理解 对于hadoop的map端配置项"mapreduce.task.io.sort.mb"和"mapreduce.map.sort.spill.percen ...
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- Hadoop Map/Reduce教程
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/mapred_tutorial.html 目的 先决条件 概述 输入与输出 例子:WordCount v1.0 ...
随机推荐
- Windows平台编程涉及的函数
VirtualAlloc 调用进程的虚拟地址空间 GetTickCount 返回从操作系统启动到当前所经历过的毫秒数 malloc.h内存分配函数,需要头文件malloc.h
- Java基础学习-常见API
package commonAPIs; /*java.lang 类 Object java.lang.Object public class Object类 Object 是类层次结构的根类.每个类都 ...
- python项目中requirements的巧用(一键导入所有安装包)
一个Python 项目中可能安装很多安装包, 再次创建虚拟环境是需要重新安装的话很麻烦也费时间, 或者项目部署的时候避免重装, 可以将现有项目的所有安装包记录在requirements.txt 文件, ...
- vue.js 源代码学习笔记 ----- 工具方法 props
/* @flow */ import { hasOwn, isObject, isPlainObject, capitalize, hyphenate } from 'shared/util' imp ...
- 微信小程序自定义tabbar的问题
个人感觉小程序的tab样式自定义的能力有所欠缺,不够美观,于是今天自己diy了一个tab 测试的时候发现,无论是使用navigator跳转(会出现点击的效果)还是用bindtap(触摸),因为没有定义 ...
- Unity遍历资源下的所有文件以及子文件
笔者介绍:姜雪伟,IT公司技术合伙人,IT高级讲师,CSDN社区专家,特邀编辑,畅销书作者,已出版书籍:<手把手教你架构3D游戏引擎>电子工业出版社和<Unity3D实战核心技术详解 ...
- OkHttp之BridgeInterceptor简单分析
在< Okhttp源码简单解析(一) >这篇博客简单分析了Okhttp请求的执行流程,通过该篇博客我们知道OkHttp的核心网络请求中内置"拦截器"发挥了重大作用:本篇 ...
- iOS开发CocoaPods使用
一.为什么用CocoaPods iOS开发时,项目中会引用许多第三方库,CocoaPods(https://github.com/CocoaPods/CocoaPods)可以用来方便的统一管理这些第三 ...
- 自己手写一个SpringMVC框架
前端框架很多,但没有一个框架称霸,后端框架现在Spring已经完成大一统.所以学习Spring是Java程序员的必修课. Spring框架对于Java后端程序员来说再熟悉不过了,以前只知道它用的反射实 ...
- [OpenCV笔记]0.OpenCV中显示多张图像
摘要 本文主要介绍OpenCV中同时显示多张IplImage图像的方法(C++形式的多图显示需要修改,用vector<Mat>可能比较方便),有点类似MATLAB中的subplot,只是暂 ...