2318

2398

题意:给出n条线将一块区域分成n+1块空间,再给出m个点,询问这些点在哪个空间里。

思路:由于只要求相对位置关系,而对具体位置不关心,那么易使用叉积性质得到相对位置关系(左侧/右侧),再因为是简单几何线段不相较,即有序分布,那么在求在哪个区间时可以先对所有线段根据x坐标排序,使用二分减少复杂度。

/** @Date    : 2017-07-11 11:05:59
* @FileName: POJ 2318 叉积性质.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct Point
{
int x, y;
Point(){}
Point(int xx, int yy){x = xx, y = yy;}
Point operator -(const Point &b) const
{
return Point(x - b.x, y - b.y);
}
int operator *(const Point &b) const
{
return x * b.x + y * b.y;
}
}; int cross(Point a, Point b)
{
return a.x * b.y - a.y * b.x;
} struct Line
{
Point s, t;
Line(){}
Line(Point ss, Point tt){s = ss, t = tt;}
}; int JudegeCross(Point p0, Point p1, Point p2)
{
return cross(p1 - p0, p2 - p0);
} Line li[N];
int ans[N];
int vis[N];
int cmp(Line a, Line b)
{
return a.s.x < b.s.x;
} int main()
{
int n, m, x1, x2, y1, y2;
while(~scanf("%d", &n) && n)
{
MMF(ans);
MMF(vis);
scanf("%d%d%d%d%d", &m, &x1, &y1, &x2, &y2);
for(int i = 0; i < n; i++)
{
int s, t;
scanf("%d%d", &s, &t);
li[i] = Line(Point(s, y1), Point(t, y2));
}
li[n] = Line(Point(x2, y1), Point(x2, y2));
sort(li, li + n + 1, cmp);
while(m--)
{
int x, y;
scanf("%d%d", &x, &y);
Point p = Point(x, y);
int l = 0, r = n;
int pos = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(JudegeCross(p, li[mid].s, li[mid].t) < 0)
{
pos = mid;
r = mid - 1;
}
else
l = mid + 1;
}
ans[pos]++;
}
printf("Box\n");
for(int i = 0; i <= n; i++)
if(ans[i])
vis[ans[i]]++;
for(int i = 1; i <= n; i++)
if(vis[i])
printf("%d: %d\n", i, vis[i]);
}
return 0;
}
/** @Date    : 2017-07-11 11:05:59
* @FileName: POJ 2318 叉积性质.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct Point
{
int x, y;
Point(){}
Point(int xx, int yy){x = xx, y = yy;}
Point operator -(const Point &b) const
{
return Point(x - b.x, y - b.y);
}
int operator *(const Point &b) const
{
return x * b.x + y * b.y;
}
}; int cross(Point a, Point b)
{
return a.x * b.y - a.y * b.x;
} struct Line
{
Point s, t;
Line(){}
Line(Point ss, Point tt){s = ss, t = tt;}
}; int JudegeCross(Point p0, Point p1, Point p2)
{
return cross(p1 - p0, p2 - p0);
} Line li[N];
int ans[N]; int main()
{
int n, m, x1, x2, y1, y2;
while(~scanf("%d", &n) && n)
{
MMF(ans);
scanf("%d%d%d%d%d", &m, &x1, &y1, &x2, &y2);
for(int i = 0; i < n; i++)
{
int s, t;
scanf("%d%d", &s, &t);
li[i] = Line(Point(s, y1), Point(t, y2));
}
li[n] = Line(Point(x2, y1), Point(x2, y2));
while(m--)
{
int x, y;
scanf("%d%d", &x, &y);
Point p = Point(x, y);
int l = 0, r = n;
int pos = 0;
while(l <= r)
{
int mid = (l + r) >> 1;
if(JudegeCross(p, li[mid].s, li[mid].t) < 0)
{
pos = mid;
r = mid - 1;
}
else
l = mid + 1;
}
ans[pos]++;
}
for(int i = 0; i <= n; i++)
{
printf("%d: %d\n", i, ans[i]);
}
printf("\n");
}
return 0;
}

POJ 2318/2398 叉积性质的更多相关文章

  1. 二分+叉积判断方向 poj 2318 2398

    // 题意:问你每个区域有多少个点 // 思路:数据小可以直接暴力 // 也可以二分区间 #include <cstdio> #include <cstring> #inclu ...

  2. POJ 2318 TOYS 叉积

    题目大意:给出一个长方形盒子的左上点,右下点坐标.给出n个隔板的坐标,和m个玩具的坐标,求每个区间内有多少个玩具. 题目思路:利用叉积判断玩具在隔板的左方或右方,并用二分优化查找过程. #includ ...

  3. POJ 2318 TOYS (叉积+二分)

    题目: Description Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  4. 向量的叉积 POJ 2318 TOYS & POJ 2398 Toy Storage

    POJ 2318: 题目大意:给定一个盒子的左上角和右下角坐标,然后给n条线,可以将盒子分成n+1个部分,再给m个点,问每个区域内有多少各点 这个题用到关键的一步就是向量的叉积,假设一个点m在 由ab ...

  5. poj 2318 TOYS &amp; poj 2398 Toy Storage (叉积)

    链接:poj 2318 题意:有一个矩形盒子,盒子里有一些木块线段.而且这些线段坐标是依照顺序给出的. 有n条线段,把盒子分层了n+1个区域,然后有m个玩具.这m个玩具的坐标是已知的,问最后每一个区域 ...

  6. 简单几何(点与线段的位置) POJ 2318 TOYS && POJ 2398 Toy Storage

    题目传送门 题意:POJ 2318 有一个长方形,用线段划分若干区域,给若干个点,问每个区域点的分布情况 分析:点和线段的位置判断可以用叉积判断.给的线段是排好序的,但是点是无序的,所以可以用二分优化 ...

  7. poj 2318 叉积+二分

    TOYS Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13262   Accepted: 6412 Description ...

  8. POJ 2318 TOYS(叉积+二分)

    题目传送门:POJ 2318 TOYS Description Calculate the number of toys that land in each bin of a partitioned ...

  9. poj 2398(叉积判断点在线段的哪一侧)

    Toy Storage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5016   Accepted: 2978 Descr ...

随机推荐

  1. emmmmmm

    211606342杨艺勇 211606379王熙航 单元测试 对每一个代码块进行测试,返回测试结果并和预期结果进行比对 对源代码进行相应的重构,以适应测试代码的调用,且不影响源代码的正常运行 通过与构 ...

  2. Ubuntu16.04安装json-c

    1. 安装依赖 sudo apt-get install git gcc clang libtool autoconf automake doxygen valgrind 一些版本要求,如果版本过低可 ...

  3. OOP 1.3 动态内存分配

    1.new运算符用法 分配一个变量:P=new T; T是任意类型名,P是类型为T的指针.动态分配出一片大小为sizeof(T)字节的内存空间,将该空间的起始地址赋值给P(new T的返回值为 T). ...

  4. 博弈--ZOJ 3084 S-Nim(SG)

    题意: 首先输入K 表示一个集合的大小  之后输入集合 表示对于这对石子只能去这个集合中的元素的个数 之后输入 一个m 表示接下来对于这个集合要进行m次询问  之后m行 每行输入一个n 表示有n个堆  ...

  5. HTML5+规范:Webview的使用详解

    一.知识点 Webview模块管理应用窗口界面,实现多窗口的逻辑控制管理操作.通过plus.webview可获取应用界面管理对象. 1.方法 1.1.all: 获取所有Webview窗口 Array[ ...

  6. Java final用法

    //继承弊端:打破了封装性. /* final关键字: 1,final是一个修饰符,可以修饰类,方法,变量. 2,final修饰的类不可以被继承. 3,final修饰的方法不可以被覆盖. 4,fina ...

  7. ctf实验平台-成绩单

    题目链接:http://120.24.86.145:8002/chengjidan/ 平台地址:http://123.206.31.85/ 第一步:暴库 id=-1' union select 1,2 ...

  8. 选项卡控件(TabControl)的操作

    移除选项卡和删除不同:前者可以从控件中移除不需要的选项,后者可以删掉整个控件.

  9. Saltstack(二)

    承接上篇博客 配置管理 haproxy的安装部署 创建相关目录 # 创建配置目录 [root@linux-node1 ~]# mkdir /srv/salt/prod/pkg/ [root@linux ...

  10. C#和Java在多态情况下对成员访问的比较

    本文简单比较一下两种语言在里氏替换原则下,父类引用变量访问成员时的访问结果: 如果有两个类,如Person与Student,后者继承了前者,而且子类与父类有重名成员,当Person p = new S ...