7001. Visible Lattice Points

Problem code: VLATTICE

Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at (N,N,N). How many lattice points are visible from corner at (0,0,0) ? A point X is visible from point Y iff no other lattice point lies on the segment joining X and Y. 
 
Input : 
The first line contains the number of test cases T. The next T lines contain an interger N 
 
Output : 
Output T lines, one corresponding to each test case. 
 
Sample Input : 




 
Sample Output : 

19 
175 
 
Constraints : 
T <= 50 
1 <= N <= 1000000

这题就是求gcd(a,b,c) = 1    a,b,c <=N 的对数。

用莫比乌斯反演可以求解。

设g(n)为gcd(x,y,z)=n的个数,f(n)为n | g(i*n)的个数,那么有f(n)=sigma(n|d,g(d)),那么g(n)=sigma(n|d, mu(d/n)*f(d)),我们要求g(1),则g(1)=sigma(n|d, mu(d)*f(d)),

因为f(d)=(n/d)*(n/d)*(n/d),所以g(1)=sigma( mu(d)*(n/d)*(n/d)*(n/d) ).

 /* ***********************************************
Author :kuangbin
Created Time :2013/8/21 18:28:50
File Name :F:\2013ACM练习\专题学习\数学\莫比乌斯反演\SPOJ7001.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
const int MAXN = ;
bool check[MAXN+];
int prime[MAXN+];
int mu[MAXN+];
void Moblus()
{
memset(check,false,sizeof(check));
mu[] = ;
int tot = ;
for(int i = ; i <= MAXN; i++)
{
if( !check[i] )
{
prime[tot++] = i;
mu[i] = -;
}
for(int j = ; j < tot; j++)
{
if(i * prime[j] > MAXN) break;
check[i * prime[j]] = true;
if( i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
else
{
mu[i * prime[j]] = -mu[i];
}
}
}
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T,n;
Moblus();
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
long long ans = ;
for(int i = ;i <= n;i++)
ans += (long long)mu[i]*(n/i)*(n/i)*((n/i)+);
printf("%lld\n",ans);
}
return ;
}

SPOJ 7001. Visible Lattice Points (莫比乌斯反演)的更多相关文章

  1. spoj 7001 Visible Lattice Points莫比乌斯反演

    Visible Lattice Points Time Limit:7000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

  2. SPOJ 7001 Visible Lattice Points (莫比乌斯反演)

    题意:求一个正方体里面,有多少个顶点可以在(0,0,0)位置直接看到,而不被其它点阻挡.也就是说有多少个(x,y,z)组合,满足gcd(x,y,z)==1或有一个0,另外的两个未知数gcd为1 定义f ...

  3. SPOJ VLATTICE Visible Lattice Points (莫比乌斯反演基础题)

    Visible Lattice Points Consider a N*N*N lattice. One corner is at (0,0,0) and the opposite one is at ...

  4. Spoj 7001 Visible Lattice Points 莫比乌斯,分块

    题目:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37193   Visible Lattice Points Time L ...

  5. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演 难度:3

    http://www.spoj.com/problems/VLATTICE/ 明显,当gcd(x,y,z)=k,k!=1时,(x,y,z)被(x/k,y/k,z/k)遮挡,所以这道题要求的是gcd(x ...

  6. SPOJ VLATTICE Visible Lattice Points 莫比乌斯反演

    这样的点分成三类 1 不含0,要求三个数的最大公约数为1 2 含一个0,两个非零数互质 3 含两个0,这样的数只有三个,可以讨论 针对 1情况 定义f[n]为所有满足三个数最大公约数为n的三元组数量 ...

  7. spoj 7001. Visible Lattice Points GCD问题 莫比乌斯反演

    SPOJ Problem Set (classical) 7001. Visible Lattice Points Problem code: VLATTICE Consider a N*N*N la ...

  8. spoj7001 Visible Lattice Points 莫比乌斯反演+三维空间互质对数

    /** 题目:Visible Lattice Points 链接:https://vjudge.net/contest/178455#problem/A 题意:一个n*n*n大小的三维空间.一侧为(0 ...

  9. SPOJ.Visible Lattice Points(莫比乌斯反演)

    题目链接 /* http://www.spoj.com/problems/VLATTICE/ 题意:求一个n*n*n的晶体,有多少点可以在(0,0,0)处可以直接看到. 同BZOJ.2301 题目即要 ...

随机推荐

  1. Redis使用详细教程【转】

    转自 Redis使用详细教程 - wangyuyu - 博客园http://www.cnblogs.com/wangyuyu/p/3786236.html 一.Redis基础部分: 1.redis介绍 ...

  2. 338.Counting Bits---位运算---《剑指offer》32

    题目链接:https://leetcode.com/problems/counting-bits/description/ 题目大意:求解从0到num的所有数的二进制表示中所有1的个数. 法一:暴力解 ...

  3. groovy的三个强劲属性(一)Gpath

            我们先从GPath开始,一个GPath是groovy代码的一个强劲对象导航的结构,名称的选择与XPath相似,XPath是一个用来描述XML(和等价物)文档的标准,正如XPath,GP ...

  4. 头像截图上传三种方式之一(一个简单易用的flash插件)(asp.net版本)

    flash中有版权声明,不适合商业开发.这是官网地址:http://www.hdfu.net/ 本文参考了http://blog.csdn.net/yafei450225664/article/det ...

  5. Java的BIO,NIO,AIO

    Java中的IO操作可谓常见.在Java的IO体系中,常有些名词容易让人困惑不解.为此,先通俗地介绍下这些名词. 1 什么是同步? 2 什么是异步? 3 什么是阻塞? 4 什么是非阻塞? 5 什么是同 ...

  6. substring() slice() substr()的区别联系

    例如:var str='q1207526854' str.substring(form,to):从字符串里截取下标为form到下标为to的字符串(不包括to对应的字符)alert(str.substr ...

  7. CSS初步了解

    CSS 概述 个人理解为对html的扩展,对html关键字进行功能添加. CSS 指层叠样式表 (Cascading Style Sheets) 样式定义如何显示 HTML 元素 样式通常存储在样式表 ...

  8. linux中getmntent setmntent endmntent 用法例子

    mntent 结构是在 <mntent.h> 中定义,如下:               struct mntent {                      char    *mnt ...

  9. golang之结构体和方法

    结构体的定义 结构体是将零个或者多个任意类型的命令变量组合在一起的聚合数据类型.每个变量都叫做结构体的成员. 其实简单理解,Go语言的结构体struct和其他语言的类class有相等的地位,但是GO语 ...

  10. 使用递归计算n的阶乘n!

    计算n! 观察公式2可以直接使用递归求解 C++代码如下: #include <iostream> using namespace std; unsigned func(unsigned ...