Written with StackEdit.

T1

取石子(stone)

Description

有\(n\)堆石子,第\(i\)堆有\(x_i\)个。

\(Alice\)和\(Bob\)轮流取石子(先后手未定),\(Alice\)每次从一堆中取走\(a\)个,\(Bob\)每次从一堆中取走\(b\)个,无法操作者输。

不难发现只会有四种情况:\(Alice\)必胜;\(Bob\)必胜;先手必胜;后手必胜。

你需要选定若干堆石子(共有\(2^n\)种方案),\(Alice\)和\(Bob\)只能在你选出的堆中取,问以上四种情况对应的方案数。对\(10^9+7\)取模。

Input

第一行三个整数\(n,a,b\),第二行\(n\)个整数\(x_1.....x_n\)。

Output

一行四个整数,分别表示\(Alice\)必胜、\(Bob\)必胜、先手必胜和后手必胜的方案数,对\(10^9+7\)取模。

Sample Input

2 2 3

2 3

Sample Output

2 0 1 1

Explanation

选定空集时后手必胜,选定{\(2\)}时\(Alice\)必胜,选定{\(3\)}时先手必胜,选定{\(2,3\)}时\(Alice\)必胜。

HINT

对于\(10\%\)的数据,\(n,x_i\leq 5\)。

对于\(50\%\)的数据,\(n\leq 20\)。

对于另外\(10\%\)的数据,\(a=b\)。

对于又另外\(20\%\)的数据,\(a=1\)。

对于\(100\%\)的数据,\(1\leq n\leq 100000,1\leq a,b,x_i\leq 10^9\)。

Solution

  • 假设有\(a \leq b.\)
  • 自然可以想到将每堆石子对\(a+b\)取模.得到一个余数\(r\).
    1. \(r < a\),这堆石子谁也不能取.没有影响.随意选即可.
    1. \(a \leq r<b.\)这堆石子只有\(Alice\)能取,只要选了,\(Alice\)必胜.
    1. \(b\leq r <2a.\) 这堆石子两人轮流取,取到双方都不能取时,先后手完成了交换.对结果的影响显然只与这样的堆数的奇偶性有关.
    1. \(2a\leq r <a+b.\)这种石子若有\(2\)堆及以上,无论谁先手,\(Alice\)总可以从这样的堆中取一次,使其变为情况\(2\)的一堆,所以\(Alice\)必胜.若有\(1\)堆且情况\(3\)的堆数为偶数,则先手必胜.若有\(1\)堆且情况\(3\)的堆数为奇数,则\(Alice\)必胜.若不存在这种堆,情况\(3\)为奇数,先手必胜,情况\(3\)为偶数,后手必胜.
  • \(Alice\)必胜的情况在\(2\)与\(4\)中有重叠部分,所以可以计算出先手后手必胜的情况数目,再用总数减去即可.(\(Bob\)不可能必胜).
#include<bits/stdc++.h>
using namespace std;
typedef long long LoveLive;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
{
fh=-1;
jp=getchar();
}
while (jp>='0'&&jp<='9')
{
out=out*10+jp-'0';
jp=getchar();
}
return out*fh;
}
const int P=1e9+7;
inline int add(int a,int b)
{
return (a+b) % P;
}
inline int mul(int a,int b)
{
return 1LL * a * b % P;
}
inline int sub(int a,int b)
{
return (add(a,-b)+P)%P;
}
int fpow(int a,int b)
{
int res=1;
while(b)
{
if(b&1)
res=mul(res,a);
a=mul(a,a);
b>>=1;
}
return res;
}
int flag=0;
int calcodd(int x)
{
if(!x)
return 0;
return fpow(2,x-1);
}
int calceven(int x)
{
if(!x)
return 1;
return fpow(2,x-1);
}
int x[4],ans[4];
int main()
{
int n,a,b;
freopen("stone.in","r",stdin);
freopen("stone.out","w",stdout);
n=read(),a=read(),b=read();
if(a>b)
swap(a,b),flag=1;
for(int i=1; i<=n; ++i)
{
int r=read();
r%=(a+b);
if(r<a)
++x[0];
else if(r>=a && r<b)
++x[1];
else if(r>=b && r<2*a)//这个区间可能为空集.加上else.
++x[2];
else if(r>=2*a)
++x[3];
}
ans[2]=mul(x[3],calceven(x[2]));
ans[2]=add(ans[2],calcodd(x[2]));
ans[2]=mul(ans[2],fpow(2,x[0]));
ans[3]=calceven(x[2]);
ans[3]=mul(ans[3],fpow(2,x[0]));
ans[0]=sub(fpow(2,n),add(ans[2],ans[3]));
if(flag)
swap(ans[0],ans[1]);
for(int i=0; i<4; ++i)
printf("%d ",ans[i]);
return 0;
}

T2

占坑.

T3

占坑.

test20181223的更多相关文章

随机推荐

  1. nmap 端口扫描王,查看端口是否可访问,是否对外开放

    NMap,也就是Network Mapper,最早是Linux下的网络扫描和嗅探工具包. 1 安装 apt-get install nmap 2 使用,查看ip下所有对外的端口 $ sudo nmap ...

  2. 机器学习经典书籍&论文

    原文地址:http://blog.sina.com.cn/s/blog_7e5f32ff0102vlgj.html 入门书单 1.<数学之美>PDF6 作者吴军大家都很熟悉.以极为通俗的语 ...

  3. Flash访问模块FDS用法及常见问题—nRF5 SDK模块系列一

    FDS,全称Flash Data Storage,用来访问芯片内部Flash的.当你需要把数据存储在Flash中,或者读取Flash中的用户数据,或者更新或者删除Flash中的数据,那么FDS模块是你 ...

  4. phpcms v9 栏目伪静态完全自定义为栏目英文目录名

    1,后台增加url规则,增加后.导航上,或分页号上,会自动替换为静态的样式.类似www.abc.com/news/2/ 2表示页码 phpcms v9 的后台扩展,url规则,添加两个规则, 一个是名 ...

  5. pandas 运算

    Data frame 和 series 的运算:横列相加减:按照index ,row 的方向直接相加减.frame-series纵列相加减:按照 columns,运用算术函数,相加减. frame.s ...

  6. 转载--httpclient原理和应用

    https://blog.csdn.net/wangpeng047/article/details/19624529/ 多谢大神的分享

  7. 上传组件UploadiFive(H5版本)

    初始化 $('#file_upload').uploadifive({ 'auto' : false, 'buttonClass':'btn', 'buttonText':'选择视频', 'fileS ...

  8. angularJS---初识指令

    angularJS 什么是angularJS AngularJS 诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款 ...

  9. js排序算法02——插入排序

    插入排序的思路是我们默认数组的第一个元素是有序的,从第二个元素开始依次和前面的元素比较,如果前面的元素大,就将前面的元素往后移一位,如果前面的元素小,就把该元素放在前面元素的后面.其实就和我们玩扑克牌 ...

  10. 【codeforces-482div2-C】Kuro and Walking Route(DFS)

    题目链接:http://codeforces.com/contest/979/problem/C Kuro is living in a country called Uberland, consis ...