bzoj2962 序列操作
2962: 序列操作
Time Limit: 50 Sec Memory Limit: 256 MB
Submit: 1145 Solved: 378
[Submit][Status][Discuss]
Description
有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反数,3.Q a b c表示询问[a,b]这一段区间中选择c个数相乘的所有方案的和mod 19940417的值。
Input
第一行两个数n,q表示序列长度和操作个数。
第二行n个非负整数,表示序列。
接下来q行每行输入一个操作I a b c或者 R a b或者Q a b c意义如题目描述。
Output
对于每个询问,输出选出c个数相乘的所有方案的和mod19940417的值。
Sample Input
1 2 3 4 5
I 2 3 1
Q 2 4 2
R 1 5
I 1 3 -1
Q 1 5 1
Sample Output
19940397
样例说明
做完第一个操作序列变为1 3 4 4 5。
第一次询问结果为3*4+3*4+4*4=40。
做完R操作变成-1 -3 -4 -4 -5。
做完I操作变为-2 -4 -5 -4 -5。
第二次询问结果为-2-4-5-4-5=-20。
HINT
100%的数据n<=50000,q<=50000,初始序列的元素的绝对值<=109,I a b c中保证[a,b]是一个合法区间,|c|<=109,R a b保证[a,b]是个合法的区间。Q a b c中保证[a,b]是个合法的区间1<=c<=min(b-a+1,20)。
Source
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll;
const ll maxn = ,mod = ;
ll n,q;
ll a[maxn],c[maxn][]; struct node
{
ll add,cover,f[],L,R;
void init()
{
add = cover = L = R = ;
memset(f,,sizeof(f));
f[] = ;
}
} e[maxn << ]; node pushup(node a,node b)
{
node c;
c.init();
c.L = a.L;
c.R = b.R;
ll len1 = c.R - c.L + ;
ll len2 = a.R - a.L + ;
ll len3 = b.R - b.L + ;
for (ll i = ; i <= min(len2,1LL * ); i++)
for (ll j = ; j <= min(len3,1LL * ); j++)
{
if (i + j > )
break;
c.f[i + j] = (c.f[i + j] + a.f[i] * b.f[j] % mod) % mod;
}
c.f[] = ; //易错点
return c;
} void fan(ll o)
{
ll len = e[o].R - e[o].L + ;
for (ll i = ; i <= min(len,1LL * ); i++)
{
if (i % == )
{
e[o].f[i] = -e[o].f[i];
e[o].f[i] = (e[o].f[i] + mod) % mod;
}
}
e[o].cover ^= ;
e[o].add = -e[o].add;
e[o].add = (e[o].add + mod) % mod; //取反后一定要变成正数
} void jia(ll o,ll v)
{
ll len = e[o].R - e[o].L + ;
for (ll i = min(len,1LL * );i >= ; i--) //一定要倒着推
{
ll k = v;
for (ll j = i - ; j >= ; j--)
{
e[o].f[i] = (e[o].f[i] + e[o].f[j] * c[len - j][i - j] % mod * k % mod) % mod;
k = k * v % mod;
}
}
e[o].add = (e[o].add + v) % mod;
} void pushdown(ll o)
{
if (e[o].cover)
{
fan(o * );
fan(o * + );
e[o].cover = ;
}
if (e[o].add)
{
jia(o * ,e[o].add);
jia(o * + ,e[o].add);
e[o].add = ;
}
} void build(ll o,ll l,ll r)
{
e[o].init();
e[o].L = l,e[o].R = r;
if (l == r)
{
e[o].f[] = a[l] % mod;
return;
}
ll mid = (l + r) >> ;
build(o * ,l,mid);
build(o * + ,mid + ,r);
e[o] = pushup(e[o * ],e[o * + ]);
} void update1(ll o,ll l,ll r,ll x,ll y,ll v)
{
if (x <= l && r <= y)
{
jia(o,v);
return;
}
pushdown(o);
ll mid = (l + r) >> ;
if (x <= mid)
update1(o * ,l,mid,x,y,v);
if (y > mid)
update1(o * + ,mid + ,r,x,y,v);
e[o] = pushup(e[o * ],e[o * + ]);
} void update2(ll o,ll l,ll r,ll x,ll y)
{
if (x <= l && r <= y)
{
fan(o);
return;
}
pushdown(o);
ll mid = (l + r) >> ;
if (x <= mid)
update2(o * ,l,mid,x,y);
if (y > mid)
update2(o * + ,mid + ,r,x,y);
e[o] = pushup(e[o * ],e[o * + ]);
} node query(ll o,ll l,ll r,ll x,ll y)
{
if (x <= l && r <= y)
return e[o];
pushdown(o);
ll mid = (l + r) >> ;
if (y <= mid)
return query(o * ,l,mid,x,y);
else if (x > mid)
return query(o * + ,mid + ,r,x,y);
else
return pushup(query(o * ,l,mid,x,mid),query(o * + ,mid + ,r,mid + ,y));
} int main()
{
scanf("%lld%lld",&n,&q);
c[][] = ;
for (ll i = ; i <= n; i++)
{
c[i][] = ;
for (ll j = ; j <= ; j++)
c[i][j] = (c[i - ][j] + c[i - ][j - ]) % mod;
}
for (ll i = ; i <= n; i++)
scanf("%lld",&a[i]);
build(,,n);
while (q--)
{
char ch[];
ll a,b,c;
scanf("%s",ch);
if (ch[] == 'I')
{
scanf("%lld%lld%lld",&a,&b,&c);
update1(,,n,a,b,c);
}
if (ch[] == 'R')
{
scanf("%lld%lld",&a,&b);
update2(,,n,a,b);
}
if (ch[] == 'Q')
{
scanf("%lld%lld%lld",&a,&b,&c);
node temp = query(,,n,a,b);
printf("%lld\n",temp.f[c] % mod);
}
} return ;
}
bzoj2962 序列操作的更多相关文章
- [bzoj2962]序列操作_线段树_区间卷积
序列操作 bzoj-2962 题目大意:给定一个n个数的正整数序列,m次操作.支持:1.区间加:2.区间取相反数:3.区间求选c个数的乘积和. 注释:$1\le n,m\le 5\cdot 10^4$ ...
- bzoj2962 序列操作 题解
题目大意: 有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反数,3.Q a b c表示询问[a,b]这 ...
- 2019.01.04 bzoj2962: 序列操作(线段树+组合数学)
传送门 线段树基础题. 题意:要求维护区间区间中选择ccc个数相乘的所有方案的和(c≤20c\le20c≤20),支持区间加,区间取负. 由于c≤20c\le20c≤20,因此可以对于每个线段树节点可 ...
- 【BZOJ2962】序列操作(线段树)
[BZOJ2962]序列操作(线段树) 题面 BZOJ 题解 设\(s[i]\)表示区间内选择\(i\)个数的乘积的和 考虑如何向上合并? \(s[k]=\sum_{i=0}^klson.s[i]*r ...
- 【BZOJ2962】序列操作 线段树
[BZOJ2962]序列操作 Description 有一个长度为n的序列,有三个操作1.I a b c表示将[a,b]这一段区间的元素集体增加c,2.R a b表示将[a,b]区间内所有元素变成相反 ...
- 【BZOJ-2962】序列操作 线段树 + 区间卷积
2962: 序列操作 Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 678 Solved: 246[Submit][Status][Discuss] ...
- Python通用序列操作
1.序列概览 1.数据结构 序列.容器 Python中最基本的数据结构是序列,其有索引(从左到右第一个索引为0,从右到左第一个索引为-1). Python包含6中内建的序列: 列表 元组 字符串 Un ...
- 【BZOJ-1858】序列操作 线段树
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1961 Solved: 991[Submit][Status ...
- bzoj 1858: [Scoi2010]序列操作
1858: [Scoi2010]序列操作 Time Limit: 10 Sec Memory Limit: 64 MB 线段树,对于每个区间需要分别维护左右和中间的1和0连续个数,并在op=4时特殊 ...
随机推荐
- hive的内置函数和自定义函数
一.内置函数 1.一般常用函数 .取整函数 round() 当传入第二个参数则为精度 bround() 银行家舍入法:为5时,前一位为偶则舍,奇则进. .向下取整 floor() .向上取整 ceil ...
- win2003系统网络安装——基于linux+pxe+dhcp+tftp+samba+ris
原文发表于:2010-09-16 转载至cu于:2012-07-21 一.原理简介 PXE(preboot execute environment)工作于Client/Server的网络模式,支持工作 ...
- Literature Books
Lean In (Sheryl Sandberg) Option B (Sheryl Sandberg) Ready Player One
- 15 分钟用 ML 破解一个验证码系统
人人都恨验证码——那些恼人的图片,显示着你在登陆某网站前得输入的文本.设计验证码的目的是,通过验证你是真实的人来避免电脑自动填充表格.但是随着深度学习和计算机视觉的兴起,现在验证码常常易被攻破. 我拜 ...
- php中注释有关内容
//单行注释 /*多行注释*/ /** 文档注释 (注意 文档注释与前面的那个多行注释不同)文档注释可以和特定的程序元素相关联 例如 类 函数 常量 变量方法 问了将文档注释与元素相关联 只需要在元素 ...
- 给个理由走下去——读《我是一只IT小小鸟》有感
和很多人一样,高考失利,迷迷茫茫的走进了软件学院.关于这个专业,具体学什么是一概不知,只知道学软件的很帅很帅,幻想着以后当个行侠仗义的黑客,或是开发一款自己的游戏都是十分诱惑人的.然而这个世界有个不成 ...
- DPDK报文分类与访问控制
原创翻译,转载请注明出处. dpdk提供了一个访问控制库,提供了基于一系列分类规则对接收到的报文进行分类的能力.ACL库用来在一系列规则上执行N元组查找,可以实现多个分类和对每个分类查找最佳匹配(最高 ...
- nodejs 中on 和 emit
首先测试用例: var EventEmitter = require('events').EventEmitter var life = new EventEmitter(); // life.on( ...
- Markdown语法实践
Markdown语法实践 Markdown基本语法 1.标题 # 一级标题 ## 二级标题 ### 三级标题 eg: 一级标题 二级标题 三级标题 2.链接 标准: [Title](URL) 实例: ...
- 新浪 ip 地址库
API地址:http://int.dpool.sina.com.cn/iplookup/iplookup.php 帮助 1 2 3 4 5 6 7 8 function get_location($i ...