Simple, fast implementation of Fisher’s exact test. . For example, for the following table:

o Having the property Not having the property
Selected 12 5
Not selected 29 2

Perhaps we are interested in whether there is any difference of property in selected vs. non-selected groups, then we can do the Fisher’s exact test.

def fish_test(sample_hit, pop_hit, sample_count, root_count):
### sample_hit: 该样本中基因属于该term下面的个数
### pop_hit: 该物种的所有基因属于该term下面的个数
### sample_count: 样本中基因的个数
### root_count: 该物种在bp/cc/mf root 下基因的个数
sample_hit = int(sample_hit)
pop_hit = int(pop_hit)
sample_count = int(sample_count)
root_count = int(root_count)
sample_nhit = sample_count - sample_hit
pop_nhit = root_count - pop_hit
n1,n2,n3,n4 = (sample_hit, pop_hit - sample_hit,
sample_nhit, pop_nhit - sample_nhit)
p = abs(pvalue(n1,n2,n3,n4).right_tail)
return p

使用公式 phyper(k-1,M, N-M, n, lower.tail=FALSE)
     那么做为背景,总体基因为N,属于“化学刺激响应”这个分类的基因有M个。
     现在抽了n个基因,里面有k个基于这个分类,p值为
针对下面这个通路我做了计算, 和 用Python 包算的一致.
> phyper(16-1,45,7057-45,98,lower.tail=FALSE)
[1] 2.503033e-19
> phyper(11-1,48,7057-48,98,lower.tail=FALSE)
[1] 3.09068e-11
 
 
Index Pathway Name Pathway ID Pvalue Pvalue_adjusted Genes Count Pop Hit List_Total Background Genes Class
1 ABC transporters hsa02010 2.50e-19 4.71e-17                      
                       ABCA6|1.00                     
                       ABCC8|1.00                     
                       ABCG2|1.00                     
                       ABCG8|1.00                     
                       ABCB5|1.00                     
                       ABCB6|1.00                     
                       ABCC9|1.00                     
                       ABCC11|1.00                     
                       ABCA1|1.00                     
                       ABCA7|1.00                     
                       ABCA9|1.00                     
                       ABCA12|1.00                     
                       ABCB8|1.00                     
                       ABCB9|1.00                     
                       ABCG4|1.00                     
                       ABCG5|1.00                     
                   
16 45 98 7057 Environmental Information Processing
2 Fatty acid metabolism hsa01212 3.09e-11 2.91e-09                      
                       ACADSB|1.00                     
                       SCD|1.00                     
                       ACOX1|1.00                     
                       ACSL3|1.00                     
                       ACSL4|1.00                     
                       ACSL1|1.00                     
                       ACSL5|1.00                     
                       ACACA|1.00                     
                       ACADL|1.00                     
                       ACADM|1.00                     
                       ACSBG1|1.00                     
                   
11 48 98 7057 Metabolism

pvalue for go kegg enrichment的更多相关文章

  1. clusterProfiler包

    1)enrichGO:(GO富集分析) 描述:GO Enrichment Analysis of a gene set. Given a vector of genes, this function ...

  2. 32、Differential Gene Expression using RNA-Seq (Workflow)

    转载: https://github.com/twbattaglia/RNAseq-workflow Introduction RNAseq is becoming the one of the mo ...

  3. R包对植物进行GO,KEGG注释

    1.安装,加载所用到到R包 用BiocManager安装,可同时加载依赖包 source("https://bioconductor.org/biocLite.R") BiocMa ...

  4. (转)基因芯片数据GO和KEGG功能分析

    随着人类基因组计划(Human Genome Project)即全部核苷酸测序的即将完成,人类基因组研究的重心逐渐进入后基因组时代(Postgenome Era),向基因的功能及基因的多样性倾斜.通过 ...

  5. GSEA - Gene set enrichment analysis 基因集富集 | ORA - Over-Representation Analysis 分析原理与应用

    RNA-seq是利器,大部分做实验的老板手下都有大量转录组数据,所以RNA-seq的分析需求应该是很大的(大部分的生信从业人员应该都差不多要沾边吧). 普通的转录组套路并不多,差异表达基因.富集分析. ...

  6. GO 和 KEGG 的区别 | GO KEGG数据库用法 | 基因集功能注释 | 代谢通路富集

    一直都搞不清楚这两者的具体区别. 其实初学者搞不清楚很正常,因为它们的本质是相通的,都是对基因进行归类注释的数据库. 建议初学者自己使用一下这两个数据库,应该很快就能明白其中的区别. (抱歉之前没讲清 ...

  7. 手把手教你看KEGG通路图!

    手把手教你看KEGG通路图! 亲爱的小伙伴们,是不是正关注代谢通路研究?或者你正面对数据,绞尽脑汁?小编当然不能让亲们这么辛苦,今天就跟大家分享KEGG代谢通路图的正确解读方法,还在迷糊中的小伙伴赶紧 ...

  8. DAVID 进行 GO/KEGG 功能富集分析

    何为功能富集分析? 功能富集分析是将基因或者蛋白列表分成多个部分,即将一堆基因进行分类,而这里的分类标准往往是按照基因的功能来限定的.换句话说,就是把一个基因列表中,具有相似功能的基因放到一起,并和生 ...

  9. KEGG富集分析散点图.md

    输入数据格式 pathway = read.table("kegg.result",header=T,sep="\t") pp = ggplot(pathway ...

随机推荐

  1. windows上操作git基本命令

    今天准备整理一下代码,重温一下Git的基本命令,好久不用忘得差不多了. 1. 进入某个目录: 进入D盘,然后进入D盘的名为git的文件夹: $ cd D: $ cd Git 2. 返回上一级目录: $ ...

  2. 程序设计入门-C语言基础知识-翁恺-第六周:数组-详细笔记(六)

    目录 第六章:数组 6-1 数组 6-2 数组计算 6.3 课后习题 第六章:数组 6-1 数组 题目:让用户输入一组整数以-1结束输入,算出这组数的平均值,并且输出大于平均值的数. 我们需要记录用户 ...

  3. MySQL 实用技巧

    概述: MySQL有许多实用的技巧,利用这些技巧能提高工作的效率,减少一些不必要的麻烦.以下是几个我在MySQL日常维护从常用的技巧. 一.prompt 命令 功能:设置mysql客户端提示符 说明: ...

  4. 求整数A和B的二进制表示中有多少位是不同?

    如果有题目要求整数A和B二进制表示中多少位是不同的? 那我们要先考虑一个unsigned类型中变量1的个数?我们可以考虑简单的移位运算,向右移位,我们进行判断如果不是1直接丢掉,使用&运算符即 ...

  5. 逻辑回归 logistic regression(1)逻辑回归的求解和概率解释

    本系列内容大部分来自Standford公开课machine learning中Andrew老师的讲解,附加自己的一些理解,编程实现和学习笔记. 第一章 Logistic regression 1.逻辑 ...

  6. HDU3652 B-number 数位DP第二题

    A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- ...

  7. 使用 ExceptionDispatchInfo 捕捉并重新抛出异常

    当你跑起了一个异步线程,并用 await 异步等待时,有没有好奇为什么能够在主线程 catch 到异步线程的异常? 当你希望在代码中提前收集好异常,最后一并把收集到的异常抛出的时候,能不能做到就像在原 ...

  8. python笔记-7(shutil/json/pickle/shelve/xml/configparser/hashlib模块)

    一.shutil模块--高级的文件.文件夹.压缩包处理模块 1.通过句柄复制内容 shutil.copyfileobj(f1,f2)对文件的复制(通过句柄fdst/fsrc复制文件内容) 源码: Le ...

  9. 《selenium2 python 自动化测试实战》(9)——切换窗口

    有时候我们点击按钮后页面会跳转到新的窗口,我们需要到新的窗口中去进行接下来的操作,这时候就需要切换窗口的操作,我们根据句柄(handle)来操作窗口之间的切换,看代码: # coding: utf-8 ...

  10. fpga rom 初始化mif文件生成

    mif文件的格式 width= depth= address_radix= data_radix= content begin 00:    ; 01:   ; 02:   ; .... end; 关 ...