题解

大概就是求证这个

\[\sum_i^nC_{n}^i*C_n^i = C_{2n}^n
\]

证明:

\[(1+x)^{2n} = [C(0,n)+C(1,n)*x+...+C(n,n)*x^n]*[[C(0,n)+C(1,n)*x+...+C(n,n)*x^n]]
\]

\[=...+[C(0,n)*C(n,n)+C(n-1,n)+...+C(n,n)*C(0,n)]x^n+...
\]

也就是说,在\((1+x)^{2n}\)的展开式中,\(x^n\)的系数是

\[\sum_k^nC(k,n)*C(n-k) = \sum_k^nC(k,n)^2
\]

以上,我们证明了范德蒙德卷积

根据二项式定理

\[(1+x)^{2n}=\sum_k^{2n}[C(k,2n)]*x^k$$即$x^k$的系数为C(n,2n),由此可得$\sum_k^nC(k,n)^2 = C(n,2n)$
###代码
```c++
#include<cstdio>
#include<algorithm>
#define LL long long
#define mod 998244353
LL inv(LL x,int y) {
LL ret = 1;
for(;y;y >>= 1,x = x * x % mod)
if(y & 1) ret = ret * x % mod;
return ret;
}
const int maxn = 1000007;
LL jc[maxn * 2];
LL C(int a,int b) {
return ((((jc[a] * inv(jc[b],mod - 2)% mod) + mod) % mod)
* inv(jc[a - b],mod - 2) + mod) % mod;
}
int main() {
jc[0] = jc[1] = 1;
int n;
scanf("%d",&n);
for(int i = 2;i <= 2 * n;++ i)
jc[i] = jc[i - 1] * i % mod;
LL ans = 0;
for(int i = 1;i <= n;++ i)
ans = (ans + C(2 * i,i)) % mod;
printf("%lld\n",ans);
return 0;
}
```\]

Wannafly挑战赛17 B的更多相关文章

  1. Wannafly挑战赛17 A 走格子【矩阵行走/模拟】

    [链接]:A [分析]:可以设置方向数组和标记数组.当不合法(越界/访问过)就转向,转向可以用now=(now+1)%4 [代码]: #include <bits/stdc++.h> #d ...

  2. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  3. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  4. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  5. Wannafly挑战赛21A

    题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define ...

  6. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  7. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  8. Wannafly挑战赛18B 随机数

    Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{ ...

  9. Wannafly挑战赛22游记

    Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...

随机推荐

  1. 【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合

    [题目]H. Ember and Storm's Tree Game [题意]Zsnuoの博客 [算法]动态规划+排列组合 [题解]题目本身其实并不难,但是大量干扰因素让题目显得很神秘. 参考:Zsn ...

  2. HDU 1577 WisKey的眼神 (找规律 数学)

    题目链接 Problem DescriptionWisKey的眼镜有500多度,所以眼神不大好,而且他有个习惯,就是走路喜欢看着地(不是为了拣钱哦^_^),所以大家下次碰见他的时候最好主动打下招呼,呵 ...

  3. python操作YAML文件之pyyaml库

    1. YAML简介 YAML是一种被认为可以超越XML.JSON的配置文件,最早接触是Spring Boot,木有想到python也是支持的,遂研究一下. python解析YAML库叫做pyyaml, ...

  4. spring3-spring的事务管理机制

    1. Spring的事务管理机制 Spring事务管理高层抽象主要包括3个接口,Spring的事务主要是由他们共同完成的: PlatformTransactionManager:事务管理器—主要用于平 ...

  5. UNIX环境高级编程学习笔记(十)为何 fork 函数会有两个不同的返回值【转】

    转自:http://blog.csdn.net/fool_duck/article/details/46917377 以下是基于 linux 0.11 内核的说明. 在init/main.c第138行 ...

  6. NOIP模拟赛 城市

    题目描述 $ZZQ$ 是一国之主. 这个国家有$N$个城市, 第$i$个城市与第$(i + 1) (mod N)$和$(i - 1) (mod N)$在一个正$N$边形相连. $ZZQ$ 又新建了$N ...

  7. Gym 101081K Pope's work

    题目链接:Gym - 101081K 题意:给n个箱子,每个箱子有一个重量W和一个承重R,表示它上面能放最多R-W的重量.问最多能把多少箱子堆到一堆. 思路:发现在一堆箱子里,两个箱子交换位置,对其他 ...

  8. 用dom4j操作xml文件

    XML的全称是eXtensible Markup Language,即“可扩展标记语言”.XML文件的作用主要是数据存储,文件配置,数据传输. html与xml的区别是:①html语法松散,xml语法 ...

  9. centos 下单独安装mysql

    https://www.cnblogs.com/running-mydream/p/4666094.html https://www.cnblogs.com/lzj0218/p/5724446.htm ...

  10. Asp.Net MVC4 之Url路由

    先来看下面两个个url,对比一下: http://xxx.yyy.com/Admin/UserManager.aspx http://xxx.yyy.com/Admin/DeleteUser/1001 ...