题意:给出一个数,把他拆成2^n和的形式,问有多少种拆法

链接:点我

对6进行分析

1 1 1 1 1 1

1 1 1 1 2

1 1 2 2

1 1 4

2 2 4

2 4

对最上面4个,显然是由4的拆分然后每个加+1 +1得到的

最下面是由,2的拆分乘2得到的

设a[n]为和为 n 的种类数;

根据题目可知,加数为2的N次方,即 n 为奇数时等于它前一个数 n-1 的种类数 a[n-1] ,若 n 为偶数时分加数中有无 1 讨论,即关键是对 n 为偶数时进行讨论:

1.n为奇数,a[n]=a[n-1]

2.n为偶数:

(1)如果加数里含1,则一定至少有两个1,即对n-2的每一个加数式后面 +1+1,总类数为a[n-2];

(2)如果加数里没有1,即对n/2的每一个加数式乘以2,总类数为a[n-2];

所以总的种类数为:a[n]=a[n-2]+a[n/2];

 #include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000000
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int a[MAXN];
int n,m,tt;
void init()
{
a[]=;
a[]=;
a[]=;
for(int i=;i<MAXN;i++)
{
if(i%) a[i]=a[i-];
else
{
a[i]=a[i/]+a[i-];
a[i]%=MOD;
}
}
}
int main()
{
int i,j,k;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
init();
while(scanf("%d",&n)!=EOF)
{
printf("%d\n",a[n]);
}
}

hdu 2709 递推的更多相关文章

  1. HDOJ(HDU).2044-2049 递推专题

    HDOJ(HDU).2044-2049 递推专题 点我挑战题目 HDU.2044 题意分析 先考虑递推关系:从1到第n个格子的时候由多少种走法? 如图,当n为下方格子的时候,由于只能向右走,所以有2中 ...

  2. HDU 2842 (递推+矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个 ...

  3. "红色病毒"问题 HDU 2065 递推+找循环节

    题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=2065 递推类题目, 可以考虑用数学方法来做, 但是明显也可以有递推思维来理解. 递推的话基本就是状态 ...

  4. Children’s Queue HDU 1297 递推+大数

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1297 题目大意: 有n个同学, 站成一排, 要求 女生最少是两个站在一起, 问有多少种排列方式. 题 ...

  5. hdu 2044-2050 递推专题

    总结一下做递推题的经验,一般都开成long long (别看项数少,随便就超了) 一般从第 i 项开始推其与前面项的关系(动态规划也是这样),而不是从第i 项推其与后面的项的关系. hdu2044:h ...

  6. ZOJ 3182 HDU 2842递推

    ZOJ 3182 Nine Interlinks 题目大意:把一些带标号的环套到棍子上,标号为1的可以所以操作,标号i的根子在棍子上时,只有它标号比它小的换都不在棍子上,才能把标号为i+1的环,放在棍 ...

  7. hdu 2604 递推 矩阵快速幂

    HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #inclu ...

  8. hdu 4055 递推

    转自:http://blog.csdn.net/shiqi_614/article/details/7983298 题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果 ...

  9. HDU 3123-GCC(递推)

    GCC Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Subm ...

随机推荐

  1. php常用函数——数学函数

    php常用函数——数学函数

  2. python基础===将Flask用于实现Mock-server

    from flask import Flask from flask import request, Response, jsonify import random import string app ...

  3. 清理oracle的用户中的日志垃圾以及修改sys用户的密码

    清理oracle的用户中的日志垃圾1.进入:/opt/oracle/product/11g/network/admin目录2.注释掉listener.ora文件中的TRACE_LEVEL_LISTEN ...

  4. Excel---导出与读取(大数据量)

    Excel下载 首先大数据量的下载,一般的Excel下载操作是不可能完成的,会导致内存溢出 SXSSFWorkbook 是专门用于大数据了的导出 构造入参rowAccessWindowSize 这个参 ...

  5. LSTM及其变种及其克服梯度消失

    本宝宝又转了一篇博文,但是真的很好懂啊: 写在前面:知乎上关于lstm能够解决梯度消失的问题的原因: 上面说到,LSTM 是为了解决 RNN 的 Gradient Vanish 的问题所提出的.关于 ...

  6. 主机名/etc/hosts文件的作用

    1,/etc/hosts,主机名ip配置文件. # Do not remove the following line, or various programs # that require netwo ...

  7. sad 关于一些html5新属性还需要用https才能支持

    像我昨天在搞一个录音的小东西 在本地正常录音正常播放 但是放到线上环境http环境上就出现了如上的错误 功能都不能正常使用 然后就改成https线上环境  然后就正常了 如上 大家有什么赐教的欢迎留言 ...

  8. beego学习笔记(4):开发文档阅读(1)

    1.beego的设计是高度模块化的.每个模块,都可以单独使用.一共八大模块: cache;session;log;orm;context;httplibs;toolbox 2.beego的执行逻辑 3 ...

  9. booklist for machine learning

    Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...

  10. 救济金发放(UVa133)

    题目具体描述见:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_prob ...