题目大意

有\(n\)张卡牌,\(r\)轮游戏。每张卡牌只能用至多一次,每张卡牌被用到的概率为\(p_i\)。现在从左往右轮,直到最右一张卡片或者某张卡片被用到。如果某张卡牌被用到,产生\(d_i\)的贡献,回合结束。求期望得分。

思路

神思路。我们用\(f[i,j]\)表示第i张牌得到j个机会的概率(包括被用过后跳掉的)。注意是恰巧得到j个机会,而不是得到至多j个机会或在第j轮被使用到。

对于\(f[i-1.j]\)的转移,我们考虑以下两种情况:

①第i-1张牌也得到了j个机会,并且以此都没有被用到过。则有

\[f[i,j]=f[i-1,j]*(1-p_(i-1))^j
\]

②第i张牌得到了j-1个机会,并且被用到了一次。我们考虑这种情况发生的概率为:

\[p_(i-1)+p_(i-1)*(1-p_(i-1))+…+p_(i-1)*(1-p_(i-1))^j
\]

上式为等比数列,化简后则有:

\[f[i,j]=f[i-1,j+1]*(1-(1-p_(i-1)^j)
\]

所以

\[f[i,j]=f[i-1,j]*(1-p_(i-1))^j+f[i-1,j+1]*(1-(1-p_(i-1)^j)
\]

最后的答案为:

\[ans=∑f[i,j]*(1-(1-p_i)^j)*d_i
\]

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MAXN=220+5;
const int MAXR=132+5;
double p[MAXN];
int d[MAXN];
double f[MAXN][MAXR];
int n,r; void init()
{
scanf("%d%d",&n,&r);
for (int i=1;i<=n;i++) scanf("%lf%d",&p[i],&d[i]);
} void dp()
{
double ans=0;
memset(f,0,sizeof(f));
f[0][r]=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=r;j++)
{
f[i][j]=f[i-1][j]*pow(1-p[i-1],j)+f[i-1][j+1]*(1-pow(1-p[i-1],j+1));
ans+=f[i][j]*(1-pow(1-p[i],j))*d[i];
}
printf("%.10lf\n",ans);
} int main()
{
int T;
scanf("%d",&T);
while (T--)
{
init();
dp();
}
return 0;
}

【期望DP】BZOJ4008- [HNOI2015]亚瑟王的更多相关文章

  1. 概率DP——BZOJ4008 [HNOI2015]亚瑟王

    [HNOI2015]亚瑟王 Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑.他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂 ...

  2. BZOJ4008: [HNOI2015]亚瑟王(期望dp)

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 1952  Solved: 1159[Submit][Status] ...

  3. BZOJ4008:[HNOI2015]亚瑟王(DP,概率期望)

    Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个 ...

  4. Bzoj4008 [HNOI2015]亚瑟王

    Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge Submit: 1009  Solved: 605[Submit][Status] ...

  5. BZOJ4008 : [HNOI2015]亚瑟王(期望dp)

    题意 略(看了20min才看懂...) 题解 我一开始天真地一轮轮推期望,发现根本不好算... 唉~ 不会做就只能抄题解咯 看了一波DOFY大佬的解法qwq 发现有句神奇的话 记住,期望要倒着推... ...

  6. bzoj4008: [HNOI2015]亚瑟王【期望dp】

    一个特别神奇的dp,特别厉害. f(i, j) 表示 有 j 轮发动技能的牌在 [1, i] 另外的m - j轮在[i + 1, n]之间的概率. 怎么转移呢? 首先考虑i这张牌不选的情况,f(i - ...

  7. BZOJ4008. [HNOI2015]亚瑟王 期望概率dp

    看到这道题想什么? 一个好转移的状态由于T最多444所以把每个点控制在O(400000)以内,所以对于n和r最多乘一次因此猜f[n][r],f[r][n],首先一轮一轮的搞不好转移,那么先想一想f[n ...

  8. BZOJ4008 [HNOI2015]亚瑟王 【概率dp】

    题目链接 BZOJ4008 题解 要求所有牌造成伤害的期望,就是求每一张牌发动的概率\(g[i]\) 我们发现一张牌能否发动,还与其前面的牌是否发动有关 那我们设\(f[i][j]\)表示前\(i\) ...

  9. bzoj4008: [HNOI2015]亚瑟王 dp

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4008 思路 神仙啊 \(f[i][j]表示第i个点有j次机会(不管成功与否)\) \(f ...

  10. 2018.10.13 bzoj4008: [HNOI2015]亚瑟王(概率dp)

    传送门 马上2点考初赛了,心里有点小紧张. 做道概率dp压压惊吧. 话说这题最开始想错了. 最开始的方法是考虑f[i][j]f[i][j]f[i][j]表示第iii轮出牌为jjj的概率. 然后用第ii ...

随机推荐

  1. C++学习之路(十):虚继承引入的执行效率

    这篇文章不知道取啥名字了,暂且这样叫,直接看场景就明白了.节选自<深度探索C++对象模型> Point3d origin, *pt = &origin; (1)origin.x = ...

  2. 【转载】在GitHub上管理项目

    在GitHub上管理项目 新建repository 本地目录下,在命令行里新建一个代码仓库(repository) 里面只有一个README.md 命令如下: touch README.md git ...

  3. SPOJ JZPLIT

    Problem SPOJ Solution 考虑任意一个作为矩阵四个角的位置 \(r_i \oplus c_j\oplus a_{i,j}\oplus x_{i,j}=0\) \(r_i \oplus ...

  4. java基础4 函数

    本文知识点(目录): 1.函数的概述    2.函数的格式    3.自定义函数    4.函数的特点    5.函数的应用    6.函数的重载 1.函数的概述 发现不断进行加法运算,为了提高代码的 ...

  5. linux的fwrite()使用方法,当前时间写入文本的程序

    fwrite函数 1.函数功能 用来读写一个数据块. 2.一般调用形式 fwrite(buffer,size,count,fp); 3.说明 (1)buffer:是一个指针,对fread来说,它是读入 ...

  6. Cookie对象与Session对象-java

    1.Cookie对象 1.1常见的方法 (1)创建Cookie对象,绑定数据 new Cookie(String name, String value) (2)发送Cookie对象 response. ...

  7. HDU 2594 Simpsons’ Hidden Talents(KMP求s1前缀和s2后缀相同部分)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2594 题目大意:给两串字符串s1,s2,,找到最长子串满足既是s1的前缀又是s2的后缀,输出子串,及相 ...

  8. Codeforces 822C Hacker, pack your bags!(思维)

    题目大意:给你n个旅券,上面有开始时间l,结束时间r,和花费cost,要求选择两张时间不相交的旅券时间长度相加为x,且要求花费最少. 解题思路:看了大佬的才会写!其实和之前Codeforces 776 ...

  9. Python+Selenium 自动化实现实例-模块化调用

    public 目录存一些公共模块,供用例调用.login.py 内容如下: # coding=utf-8 import time # login def login(driver): driver.f ...

  10. 三十分钟理解计算图上的微积分:Backpropagation,反向微分

    神经网络的训练算法,目前基本上是以Backpropagation (BP) 反向传播为主(加上一些变化),NN的训练是在1986年被提出,但实际上,BP 已经在不同领域中被重复发明了数十次了(参见 G ...