题目链接:

XOR Queries

给出一个长度为nn的数组CC,回答mm个形式为(L, R, A, B)(L,R,A,B)的询问,含义为存在多少个不同的数组下标k \in [L, R]k∈[L,R]满足C[k] \bigoplus A \geq BC[k]⨁A≥B(式中\bigoplus⨁为异或运算)。

输入描述

输入第一行为一个整数TT,表示一共有TT组测试数据。

对于每组测试数据:

第一行为两个整数nn,mm(1 \leq n, m \leq 500001≤n,m≤50000)。

第二行为nn个整数表示数组CC(0 \leq C[i] \leq 10^{9}0≤C[i]≤10​9​​)。

接下来mm行中,第ii行有四个整数L_{i}L​i​​,R_{i}R​i​​,A_{i}A​i​​,B_{i}B​i​​(1 \leq L_{i} \leq R_{i} \leq n1≤L​i​​≤R​i​​≤n, 0 \leq A_{i}, B_{i} \leq 10^{9}0≤A​i​​,B​i​​≤10​9​​)。

输出描述

对于每次询问:输出一个整数表示满足条件的数组下标数目。

样例输入

1
5 2
1 2 3 4 5
1 3 1 1
2 5 2 3

样例输出

2
2 题意:给出一个数列,然后m个询问,每一询问是问这个区间里面有多少个a[k]^A>=B;
思路:显然是一个莫队,trie树里面存的是当前区间里面的数,所以需要trie的insert和del操作,
然后就是询问这个区间里面有多少个异或大于等于B就贪心就好了,注意最后相等的情况,需要写个query就好;
AC代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn=5e4+10;
int n,m,a[maxn],ans[maxn];
struct node
{
int l,r,a,b,id,sq;
}po[maxn];
int cmp(node x,node y)
{
if(x.sq==y.sq)return x.r<y.r;
return x.l<y.l;
}
int ch[31*maxn][2],val[31*maxn];
int sz;
inline void init()
{
sz=1;
memset(ch[0],0,sizeof(ch[0]));
}
inline void insert(int x)
{
int u=0,len=30;
for(int i=len;i>=0;i--)
{
int c=((x>>i)&1);
if(!ch[u][c])
{
memset(ch[sz],0,sizeof(ch[sz]));
val[sz]=0;
ch[u][c]=sz++;
}
u=ch[u][c];
val[u]++;
}
}
inline void Delete(int x)
{
int u=0,len=30;
for(int i=len;i>=0;i--)
{
int c=((x>>i)&1);
u=ch[u][c];
val[u]--;
}
}
inline int query(int A,int B)
{
int u=0,len=30,sum=0,flag;
for(int i=len;i>=0;i--)
{
int c=((A>>i)&1),d=((B>>i)&1);
int ha=u;
if(ch[u][1]&&(c^1)>d)
{
int tep=ch[u][1];
sum=sum+val[tep];
}
if(ch[u][0]&&(c^0)>d)
{
int tep=ch[u][0];
sum=sum+val[tep];
}
flag=0;
if(ch[u][1]&&(c^1)==d)u=ch[u][1],flag=1;
if(ch[u][0]&&(c^0)==d)u=ch[u][0],flag=1;
if(ha==u)break;
}
if(flag)sum=sum+val[u];
return sum;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
init();
int sq=sqrt(n*1.0);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&po[i].l,&po[i].r,&po[i].a,&po[i].b);
po[i].id=i;po[i].sq=po[i].l/sq;
}
sort(po+1,po+m+1,cmp);
int l=1,r=0;
for(int i=1;i<=m;i++)
{
while(r<po[i].r)r++,insert(a[r]);
while(r>po[i].r)Delete(a[r]),r--;
while(l<po[i].l)Delete(a[l]),l++;
while(l>po[i].l)l--,insert(a[l]);
ans[po[i].id]=query(po[i].a,po[i].b);
}
for(int i=1;i<=m;i++)printf("%d\n",ans[i]);
}
return 0;
}

  

 

XOR Queries(莫队+trie)的更多相关文章

  1. XOR (莫队)

    Time Limit: 2000 ms   Memory Limit: 256 MB Description 给定一个含有n个整数的序列 a1, a2,..., an. 定义 f(x,x) = a[x ...

  2. Sona && Little Elephant and Array && Little Elephant and Array && D-query && Powerful array && Fast Queries (莫队)

    vjudge上莫队专题 真的是要吐槽自己(自己的莫队手残写了2个bug) s=sqrt(n) 是元素的个数而不是询问的个数(之所以是sqrt(n)使得左端点每个块左端点的范围嘴都是sqrt(n)) 在 ...

  3. CodeForces 375D Tree and Queries 莫队||DFS序

    Tree and Queries 题意:有一颗以1号节点为根的树,每一个节点有一个自己的颜色,求出节点v的子数上颜色出现次数>=k的颜色种类. 题解:使用莫队处理这个问题,将树转变成DFS序区间 ...

  4. 7.11 NOI模拟赛 qiqi20021026的T1 四个指针莫队 trie树

    LINK:qiqi20021026的T1 考场上只拿到了50分的\(nq\)暴力. 考虑一个区间和一个区间配对怎么做 二分图最大带权匹配复杂度太高. 先考虑LCS的问题 常见解决方法是后缀数组/tri ...

  5. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

  6. cf375D. Tree and Queries(莫队)

    题意 题目链接 给出一棵 n 个结点的树,每个结点有一个颜色 c i . 询问 q 次,每次询问以 v 结点为根的子树中,出现次数 ≥k 的颜色有多少种.树的根节点是1. Sol 想到了主席树和启发式 ...

  7. [Codeforces375D]Tree and Queries(莫队算法)

    题意:给定一棵树,每个节点有颜色,对于每个询问(u,k)询问以u为根节点的子树下有多少种颜色出现次数>=k 因为是子树,跟dfs序有关,转化为一段区间,可以用莫队算法求解 直接用一个数组统计出现 ...

  8. Codeforces617 E . XOR and Favorite Number(莫队算法)

    XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...

  9. Codeforeces 617E XOR and Favorite Number(莫队+小技巧)

    E. XOR and Favorite Number time limit per test 4 seconds memory limit per test 256 megabytes input s ...

随机推荐

  1. 20135302魏静静——linux课程第六周实验及总结

    linux课程第六周实验及总结 实验及学习总结 1.进程描述符task_struct数据结构 进程的作用: 将信号.进程间通信.内存管理和文件系统联系起来 操作系统的三大功能: 进程管理.内存管理.文 ...

  2. Hive查询Join

    Select a.val,b.val From a [Left|Right|Full Outer] Join b On (a.key==b.key); 现有两张表:sales 列出了人名及其所购商品的 ...

  3. 如何升级到python3版本并且安装pip3

    如何升级到python3版本并且安装pip3 准备: Python-3.5.2.tar.xz pip-8.1.2.tar.gz setuptools-24.0.2.zip 步骤: 1.自定义编译安装p ...

  4. mybatis批量保存的两种方式(高效插入)

    知识点:mybatis中,批量保存的两种方式 1.使用mybatis foreach标签 2.mybatis ExecutorType.BATCH 参考博客:https://www.jb51.net/ ...

  5. Java的历史及发展

    Java之父:詹姆斯·高斯林 (James Gosling) Java自1995诞生,至今已经20多年的历史. Java的名字的来源:Java是印度尼西亚爪哇岛的英文名称,因盛产咖啡而闻名.Java语 ...

  6. LIS严格递增和非递减模板

    2017-09-10 16:51:03 writer:pprp 严格递增的LIS模板 #include<stdio.h> #include<string.h> #include ...

  7. RabbitMQ入门(3)——发布/订阅(Publish/Subscribe)

    在上一篇RabbitMQ入门(2)--工作队列中,有一个默认的前提:每个任务都只发送到一个工作人员.这一篇将介绍发送一个消息到多个消费者.这种模式称为发布/订阅(Publish/Subscribe). ...

  8. 使用js合并table中的单元格

    用primefaces做的报表,领导要求合并相同内容的单元格,但是primefaces没有找到可以合并单元格的组件,想来想去,只有页面加载后用js合并了. http://blog.csdn.net/d ...

  9. Yii框架(一)

    这里接触了 MVC 设计模式中的控制器和视图部分. 创建了一个操作作为控制器的一部分去处理特定请求. 然后又创建了一个视图去构造响应内容. 在这个小例子中,没有模型调用,唯一涉及到数据的地方是 mes ...

  10. php数据库乱码

    很多情况下,在本地测试是没有问题的.但是一上线,问题就增加了,主要还是代码方面不够全面.现在基本没人用php的了,权当学习 mysql_query("set names 'utf8'&quo ...