题目描述

某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

输入输出格式

输入格式:

文件第一行是两个数字n(0<n<50,表示路灯的总数)和c(1<=c<=n老张所处位置的路灯号);

接下来n行,每行两个数据,表示第1盏到第n盏路灯的位置和功率。

输出格式:

一个数据,即最少的功耗(单位:J,1J=1W·s)。

输入输出样例

输入样例#1:

  1. 5 3
  2. 2 10
  3. 3 20
  4. 5 20
  5. 6 30
  6. 8 10
输出样例#1:

  1. 270

说明

输出解释:

{此时关灯顺序为3 4 2 1 5,不必输出这个关灯顺序}


不就是那次模拟赛的数据减弱版

http://www.cnblogs.com/candy99/p/5968110.html

发现每次关完一定是一段区间

f[i][j][0/1]表示i到j关完,在左/在右的最小花费(这个花费是计算没关的)

也满足最优子结构

转移从f[i+1][j]和f[i][j-1]

注意边界 for(int i=1;i<=n;i++) f[i][i][0]=f[i][i][1]=abs(a[st]-a[i])*s[n];

  1. #include <iostream>
  2. #include <cstdio>
  3. #include <algorithm>
  4. #include <cstring>
  5. using namespace std;
  6. const int N=,INF=1e9;
  7. inline int read(){
  8. char c=getchar();int x=,f=;
  9. while(c<''||c>''){if(c=='-')f=-;c=getchar();}
  10. while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
  11. return x*f;
  12. }
  13. int n,st,a[N],w[N],s[N];
  14. int f[N][N][];
  15. void dp(){
  16. for(int i=;i<=n;i++) s[i]=s[i-]+w[i];
  17. for(int i=;i<=n;i++) f[i][i][]=f[i][i][]=abs(a[st]-a[i])*s[n];
  18. for(int i=n;i>=;i--)
  19. for(int j=i+;j<=n;j++){
  20. f[i][j][]=min(f[i+][j][]+(s[i]+s[n]-s[j])*(a[i+]-a[i]),
  21. f[i][j-][]+(s[i-]+s[n]-s[j-])*(a[j]-a[j-])
  22. +(s[i-]+s[n]-s[j])*(a[j]-a[i]) );
  23. f[i][j][]=min(f[i][j-][]+(s[i-]+s[n]-s[j-])*(a[j]-a[j-]),
  24. f[i+][j][]+(s[i]+s[n]-s[j])*(a[i+]-a[i])
  25. +(s[i-]+s[n]-s[j])*(a[j]-a[i]) );
  26. }
  27. }
  28. int main(){
  29. n=read();st=read();
  30. for(int i=;i<=n;i++) a[i]=read(),w[i]=read();
  31. dp();
  32. printf("%d",min(f[][n][],f[][n][]));
  33. }

洛谷P1220关路灯[区间DP]的更多相关文章

  1. 洛谷 P1220 关路灯 区间DP

    题目描述 某一村庄在一条路线上安装了 n 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了 ...

  2. 洛谷P1220关路灯——区间DP

    题目:https://www.luogu.org/problemnew/show/P1220 区间DP. 代码如下: #include<iostream> #include<cstd ...

  3. 洛谷P1220关路灯[区间DP 提前计算代价]

    题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯. 为了给村 ...

  4. 洛谷 P1220 关路灯 题解

    Description 有 $n$ 盏路灯,每盏路灯有坐标(单位 $m$)和功率(单位 $J$).从第 $c$ 盏路灯开始,可以向左或向右关闭路灯.速度是 $1m/s$.求所有路灯的最少耗电.输入保证 ...

  5. 洛谷P1220 关路灯

    洛谷1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关 ...

  6. P1220 关路灯——区间dp

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了 \(n\) 盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一 ...

  7. 洛谷——P1220 关路灯

    P1220 关路灯 题目描述 某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少).老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉 ...

  8. 洛谷P1220 关路灯 题解 区间DP

    题目链接:https://www.luogu.com.cn/problem/P1220 本题涉及算法:区间DP. 我们一开始要做一些初始化操作,令: \(p[i]\) 表示第i个路灯的位置: \(w[ ...

  9. 洛谷P1220 关路灯【区间dp】

    题目:https://www.luogu.org/problemnew/show/P1220 题意:给定n盏灯的位置和功率,初始时站在第c盏处. 关灯不需要时间,走的速度是1单位/秒.问把所有的灯关掉 ...

随机推荐

  1. OA项目——总结

    先来张大致结构图: 项目链接:https://github.com/shuai7boy/YM_OA

  2. UDS(ISO14229-2006) 汉译(No.5 公共约定)

    ISO 14229遵循OSI Service Conventions(ISO 10731)(OSI服务公约)所述,并应用于诊断服务.这些约定指定相互作用与服务消费者和服务提供者.通过服务原语,信息数据 ...

  3. python基础之异常处理

    Python3 错误和异常 作为Python初学者,在刚学习Python编程时,经常会看到一些报错信息,在前面我们没有提及,这章节我们会专门介绍. Python有两种错误很容易辨认:语法错误和异常. ...

  4. 无限级ddsmoothmenu菜单实例

    点击这里查看效果以横向ddsmoothmenu下来菜单为例,以下是实现代码: <base target="_blank" /><link rel="st ...

  5. 学习zepto.js(对象方法)[4]

    今天说说那一套获取元素集合的一些方法: ["children", "clone", "closest", "contents&qu ...

  6. 移动AD的计算机到对应的OU的powershell脚本

    #//************************************************************* #//编辑人: #//编辑单位: #//编辑作用:移动计算机到对应的O ...

  7. gcc boost版本冲突解决日记

    问题背景 项目在Ubuntu10 64位 boost 1.55,boost采用的是项目内包含相对目录的形式部署 项目采用了 -Wall -Wextra -Werror -Wconversion 最高的 ...

  8. 2016年4月21百度iOS实习生在线笔试题&编程题

    1.一个人上台阶可以一次上1个,2个,或者3个,问这个人上32层的台阶,总共有几种走法? 思路:先建立数学模型,设3步的走 i 次,2步的走 j 次, 1步的走 k 次,上了3*i + 2*j + 1 ...

  9. XIB 上的控件不显示怎么办

    原文:http://www.cnblogs.com/sandyzhang/p/5660061.html   午休时间遇到有人求助:说是XIB 上内容都有的,但是看不到,demo 运行的话控件都存在的. ...

  10. Java获取XML节点总结之读取XML文档节点

    dom4j是Java的XML API,用来读写XML文件的.目前有很多场景中使用dom4j来读写xml的.要使用dom4j开发,需要下载导入dom4j相应的jar文件.官网下载:http://www. ...