HDU6311 Cover

题意:

给出\(N\)个点的简单无向图,不一定联通,现在要用最少的路径去覆盖所有边,并且每条边只被覆盖一次,问最少路径覆盖数和各条路径

\(N\le 10^5\)

题解:

对于每个连通块分别处理

考虑每个联通块,必然是用最少的欧拉路径去覆盖,首先考虑连通块里没有奇数度数的点的情况,这个情况下只要跑欧拉回路即可

如果连通块中有\(x\)个奇数度数的点,那么显然\(2|x\),且必然是用\(\frac{x}{2}\)条欧拉路径去覆盖,每两个奇数度数的顶点之间会有一条欧拉路径,考虑如何构造路径,首先将奇数度数的顶点两两配对连边,只剩下一对奇数度数点不连边,然后在新建的图中跑欧拉路径(此时必然存在欧拉路径),可以发现其中\(\frac{x}{2}-1\)条新加入的边正好把路径分成了\(\frac{x}{2}\)条,这些分开来的路径正好是所求路径

view code
//#pragma GCC optimize("O3")
//#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<bits/stdc++.h>
using namespace std;
function<void(void)> ____ = [](){ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0);};
const int MAXN = 1e5+7;
int n, m, deg[MAXN], bel[MAXN], vis[MAXN<<2], num[MAXN];
vector<int> pt[MAXN];
struct Graph{
int head[MAXN],to[MAXN<<2],nxt[MAXN<<2],tot,id[MAXN<<2];
void clear(){ tot = 0; memset(head,255,MAXN<<2); }
void addEdge(int u, int v, int idd){
to[tot] = v; nxt[tot] = head[u]; id[tot] = idd;
vis[tot] = false; head[u] = tot++;
to[tot] = u; nxt[tot] = head[v]; id[tot] = -idd;
vis[tot] = false; head[v] = tot++;
}
}G;
void mark(int u, int id){
bel[u] = id;
pt[id].push_back(u);
for(int i = G.head[u]; ~i; i = G.nxt[i]){
int v = G.to[i];
if(!bel[v]) mark(v,id);
}
}
stack<int> stk;
void euler(int u){
int now = ++num[u];
for(int i = G.head[u]; ~i; i = G.nxt[i]){
if(vis[i]) continue;
G.head[u] = G.nxt[i];
vis[i] = vis[i^1] = true;
euler(G.to[i]);
stk.push(G.id[i]);
if(now!=num[u]) break;
}
}
void print(){
printf("%d ",stk.size());
while(!stk.empty()){
printf("%d%c",stk.top()," \n"[stk.size()==1]);
stk.pop();
}
}
void rua(int id){
int odddeg = 0;
for(int &x : pt[id]) if(deg[x]&1) odddeg++;
if(!odddeg){
euler(pt[id][0]);
print();
}
else{
int last = -1;
for(int &x : pt[id]){
if(odddeg==2) break;
if(deg[x]&1){
if(last==-1) last = x;
else{
G.addEdge(last,x,0);
deg[last]++; deg[x]++;
last = -1;
odddeg -= 2;
}
}
}
for(int &x : pt[id]) if(deg[x]&1) last = x;
euler(last);
vector<int> vec;
while(true){
vec.clear();
while(!stk.empty() and stk.top()!=0){
vec.push_back(stk.top());
stk.pop();
}
if(!stk.empty()) stk.pop();
printf("%d",vec.size());
for(int x : vec) printf(" %d",x);
puts("");
if(stk.empty()) break;
}
}
}
void solve(){
G.clear();
memset(deg+1,0,n<<2);
for(int i = 1; i <= m; i++){
int u, v; scanf("%d %d",&u,&v);
G.addEdge(u,v,i);
deg[u]++, deg[v]++;
}
int ID = 0;
memset(bel+1,0,n<<2);
int __count = 0;
for(int i = 1; i <= n; i++) if(!bel[i]){
pt[++ID].clear();
mark(i,ID);
if(pt[ID].size() > 1){
int odddeg = 0;
for(int x : pt[ID]) if(deg[x]&1) odddeg++;
if(!odddeg) __count++;
else __count += odddeg / 2;
}
}
printf("%d\n",__count);
for(int i = 1; i <= ID; i++){
if(pt[i].size() == 1) continue;
rua(i);
}
}
int main(){
while(scanf("%d %d",&n,&m)!=EOF) solve();
return 0;
}

HDU6311 Cover【欧拉路径 | 回路】的更多相关文章

  1. HDU6311 Cover (欧拉路径->无向图有最少用多少条边不重复的路径可以覆盖一个张无向图)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图 ,输出每条路径的边的序号 , 如果是反向就输出-id. 也就是可以多少次一笔画的方式画完这个无向图. 题解:我们已知最优胜的情况是整个图是欧拉图 ...

  2. hdu6311 Cover (欧拉路径输出)

    hdu6311Cover 题目传送门 题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径. ...

  3. PKU 2513 Colored Sticks(并查集+Trie树+欧拉路径(回路))

    题目大意: 给定一些木棒,木棒两端都涂上颜色,求是否能将木棒首尾相接,连成一条直线,要求不同木棒相连接的一端必须是同颜色的. 解题思路: 可以用图论中欧拉路的知识来解这道题,首先可以把木棒两端看成节点 ...

  4. HDU 1116 Play on Words(欧拉路径(回路))

    http://acm.hdu.edu.cn/showproblem.php?pid=1116 题意:判断n个单词是否可以相连成一条链或一个环,两个单词可以相连的条件是 前一个单词的最后一个字母和后一个 ...

  5. HDU - 6311 Cover (欧拉路径)

    题意:有最少用多少条边不重复的路径可以覆盖一个张无向图. 分析:对于一个连通块(单个点除外),如果奇度数点个数为 k,那么至少需要max{k/2,1}  条路径.将奇度数的点两两相连边(虚边),然后先 ...

  6. 欧拉回路 & 欧拉路径

    欧拉路径 & 欧拉回路 概念 欧拉路径: 如果图 G 种的一条路径包括所有的边,且仅通过一次的路径. 欧拉回路: 能回到起点的欧拉路径. 混合图: 既有无向边又有无向边的图. 判定 无向图 一 ...

  7. P1341 无序字母对【欧拉路径】- Hierholzer模板

    P1341 无序字母对 提交 24.87k 通过 6.80k 时间限制 1.00s 内存限制 125.00MB 题目提供者yeszy 难度提高+/省选- 历史分数100 提交记录 查看题解 标签 福建 ...

  8. qbxt Day 5 图论一些基础知识

    就是一些感觉比较容易忘的知识 假设根为第0层, 在二叉树的i层上至多有2i个结点,整颗二叉树(深度为k)最多有\(2^{k+1}-1\)个节点 对于任何一棵非空二叉树,如果叶结点个数为\(n_0\), ...

  9. Day 4 -E - Catenyms POJ - 2337

    A catenym is a pair of words separated by a period such that the last letter of the first word is th ...

随机推荐

  1. (解决)easypoi模板导出多个excel文件并压缩

    目录 easypoi版本--3.1.0 实现代码 后语 easypoi版本--3.1.0 实现代码 public void export(HttpServletResponse response, H ...

  2. Nginx Consul nginx-upsync-module

    nginx consul nginx-upsync-module 依赖包: yum -y install libpcre3 libpcre3-dev ruby zlib1g-dev patch 下载n ...

  3. 【Linux】ntp的一些坑。你肯定遇到过

    ntpdate提示 19 Jan 10:33:11 ntpdate[29616]: no server suitable for synchronization found 这种问题从下面几个点开始验 ...

  4. Android之Xposed

    基础书籍推荐:1.疯狂JAVA讲义:2.疯狂安卓讲义: 逆向分析必须知道他的原理,不然只会用工具,那就直接GG. 谷歌的镜像网站:https://developers.google.com/andro ...

  5. SpringBoot WebSocket技术

    最近看了Spring in Action,了解了一下WebSocket和Stomp协议相关技术,并搭建了一个项目.网上的例子不完整或者描述不清,所以自己记录一下以作备忘. 一.配置 Spring Bo ...

  6. online创建索引中途取消导致索引无法删除解决办法

    问题:有一个表ID栏位没有索引,但是在一个update语句的where中被使用,因此打算online创建索引,但是长时间没有成功,此时决定取消,取消后发现索引无法删除 过程: 数据库监控报警有行锁,进 ...

  7. 爬虫学习(三)Chrome浏览器使用

    一.新建隐身窗口 在打开隐身窗口的时候,第一次请求某个网站是没有携带cookie的,和代码请求一个网站一样,不携带cookie.这样就能够尽可能的理解代码请求某个网站的结果:除非数据是通过js加载出来 ...

  8. allator 对springBoot进行加密

    1.对springboot项目添加jar包和xml文件 allatori.xml: <config> <input> <jar in="target/sprin ...

  9. CMU数据库(15-445)实验2-B+树索引实现(下+课上笔记)

    4. Index_Iterator实现 这里就是需要实现迭代器的一些操作,比如begin.end.isend等等 下面是对于IndexIterator的构造函数 template <typena ...

  10. ryu—流量监视

    1. 代码解析 ryu/app/simple_monitor_13.py: from operator import attrgetter from ryu.app import simple_swi ...