克鲁斯卡尔算法(Kruskal算法)求最小生成树
1、排序函数sort,任何一种排序算法都行,下面的示例代码中,我采用的是冒泡排序算法
2、寻源函数getRoot,寻找某一个点在并查集中的根,注意,是根,不是双亲!,所以,判断的条件为如果某一个下标的值就是其本身,设a为并查集数组,v为数组值,如果a[v] = v,它就是根,否则就让v = a[v],向上寻找,直到其相等。
1图的存储结构(a,b为边的两个顶点,w为边的权值),初始化
2.排序sort函数(按照权值从小到大)
3.getRoot寻源函数(v为并查集,x为待查顶点)
4.for循环遍历
1 #include <bits/stdc++.h>
2 using namespace std;
3 #define x first
4 #define y second
5 const int mx= 250100;
6 int n,k;
7 typedef pair<int,int> PII;
8 struct node{
9 int x,y;
10 double z;
11 };
12 bool operator <(node &a,node &b)
13 {
14 return a.z<b.z;
15 }
16
17 int f[mx];
18 PII q[mx];
19 node edge[mx];
20
21 int get(int x)
22 {
23 return x==f[x]?x:get(f[x]);
24 }
25
26 double getdist(PII a,PII b)
27 {
28 int dx=a.x-b.x;
29 int dy=a.y-b.y;
30 return sqrt(dx*dx+dy*dy);
31 }
32
33 int main()
34 {
35 cin>>n>>k;
36 for(int i=1;i<=n;i++)
37 {
38 cin>>q[i].x>>q[i].y;
39 }
40 int m=0;
41 for(int i=1;i<=n;i++)
42 {
43 for(int j=1;j<=i;j++)
44 {
45 edge[++m].x=i;
46 edge[m].y=j;
47 edge[m].z=getdist(q[i],q[j]);
48 }
49 }
50 sort(edge+1,edge+1+m);
51 for(int i=1;i<=m;i++) f[i]=i;
52 int cnt=n;
53 double ans=0;
54 for(int i=1;i<=m;i++)
55 {
56 if(cnt<=k) break;
57 int a=get(edge[i].x),b=get(edge[i].y);
58 double w=edge[i].z;
59 if(a!=b)
60 {
61 f[a]=b;
62 cnt--;
63 ans=w;
64 }
65 }
66 printf("%.2lf\n",ans);
67 }
克鲁斯卡尔算法(Kruskal算法)求最小生成树的更多相关文章
- 最小生成树之克鲁斯卡尔(Kruskal)算法
学习最小生成树算法之前我们先来了解下 下面这些概念: 树(Tree):如果一个无向连通图中不存在回路,则这种图称为树. 生成树 (Spanning Tree):无向连通图G的一个子图如果是一颗包含G的 ...
- c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树
c/c++ 用克鲁斯卡尔(kruskal)算法构造最小生成树 最小生成树(Minimum Cost Spanning Tree)的概念: 假设要在n个城市之间建立公路,则连通n个城市只需要n-1条线路 ...
- 克鲁斯卡尔(Kruskal)算法
概览 相比于普里姆算法(Prim算法),克鲁斯卡尔算法直接以边为目标去构建最小生成树.从按权值由小到大排好序的边集合{E}中逐个寻找权值最小的边来构建最小生成树,只要构建时,不会形成环路即可保证当边集 ...
- JS实现最小生成树之克鲁斯卡尔(Kruskal)算法
克鲁斯卡尔算法打印最小生成树: 构造出所有边的集合 edges,从小到大,依次选出筛选边打印,遇到闭环(形成回路)时跳过. JS代码: //定义邻接矩阵 let Arr2 = [ [0, 10, 65 ...
- 数据结构与算法——克鲁斯卡尔(Kruskal)算法
目录 应用场景-公交站问题 克鲁斯卡尔算法介绍 克鲁斯卡尔算法图解 克鲁斯卡尔算法分析 如何判断回路? 代码实现 无向图构建 克鲁斯卡尔算法实现 获取一个点的终点解释 应用场景-公交站问题 某城市新增 ...
- 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)
一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...
- 最小生成树(Prim算法+Kruskal算法)
什么是最小生成树(MST)? 给定一个带权的无向连通图,选取一棵生成树(原图的极小连通子图),使生成树上所有边上权的总和为最小,称为该图的最小生成树. 求解最小生成树的算法一般有这两种:Prim算法和 ...
- 最小生成树之算法记录【prime算法+Kruskal算法】【模板】
首先说一下什么是树: 1.只含一个根节点 2.任意两个节点之间只能有一条或者没有线相连 3.任意两个节点之间都可以通过别的节点间接相连 4.除了根节点没一个节点都只有唯一的一个父节点 5.也有可能是空 ...
- hdu 1233 还是畅通工程 最小生成树(prim算法 + kruskal算法)
还是畅通工程 Time Limit: 4000/2 ...
- 最小生成树 Prim算法 Kruskal算法实现
最小生成树定义 最小生成树是一副连通加权无向图中一棵权值最小的生成树. 在一给定的无向图 G = (V, E) 中,(u, v) 代表连接顶点 u 与顶点 v 的边(即,而 w(u, v) 代表此边的 ...
随机推荐
- Nginx解决前端访问资源跨域问题
被前端跨域问题折磨快2天后,终于用ngnx的方式解决了,所以在此总结下. 该篇只探讨如何用Ngnx解决跨域问题,对于原理不作讨论. 1.首先介绍Windows环境下Nignx的相关命令操作 nginx ...
- 新来的运维这样用HDFS,CIO都懵了···
摘要:本文主要研究了HDFS文件系统的读写流程以及基于MRS在windows客户端下读写HDFS文件的实现. HDFS(Hadoop分布式文件系统)是Apache Hadoop项目的一个子项目. HD ...
- [C#] 老古董的 Microsoft Chart Controls 也可以进行数据预测
我要先声明,这篇文章介绍到的内容虽说不是不能用,但玩乐成分居多,大家看看就好,不要太认真. 1. Microsoft Chart Controls 中的 FinancialFormula 在上一篇文章 ...
- 搞定面试官:咱们从头到尾再说一次 Java 垃圾回收
接着前几天的两篇文章,继续解析JVM面试问题,送给年后想要跳槽的小伙伴 万万没想到,面试中,连 ClassLoader类加载器 也能问出这么多问题..... 万万没想到,JVM内存区域的面试题也可以问 ...
- FlatBuffers使用小结
最近做一个Android APP,由于离线业务需求,需要在启动APP时候同步大量数据到APP上,遇到了JSON性能瓶颈.从下方的图片中可以看出,当使用 json 传输数据,在解析json的时候会产生大 ...
- 【设计模式】Java设计模式精讲之原型模式
简单记录 - 慕课网 Java设计模式精讲 Debug方式+内存分析 & 设计模式之禅-秦小波 文章目录 1.原型模式的定义 原型-定义 原型-类型 2.原型模式的实现 原型模式的通用类图 原 ...
- ./utils/build.sh: line 131: patch: command not found
安装 percona-xtrabackup-2.1.5过程中遇到如下问题: [root@test percona-xtrabackup-2.1.5]# ./utils/build.sh innodb5 ...
- Sgu149 Computer Network
Sgu149 Computer Network 题目描述 给你一棵N(N<=10000)个节点的树,求每个点到其他点的最大距离. 不难想到一个节点到其他点的最大距离为:max(以它为根的子树的最 ...
- 如何在K8s,Docker-Compose注入镜像Tag
最近在做基于容器的CI/CD, 一个朴素的自动部署的思路是: 从Git Repo打出git tag,作为镜像Tag ssh远程登录到部署机器 向部署环境注入镜像Tag,拉取镜像,重新部署 下面分享我是 ...
- tf
第2章 Tensorflow keras实战 2-0 写在课程之前 课程代码的Tensorflow版本 大部分代码是tensorflow2.0的 课程以tf.kerasAPI为主,因而部分代码可以在t ...