一无聊就找树剖写

题意:一颗带点权的树,三种操作:1.换根 2.链赋值 3.查询子树最小值


如果没有换根的话直接就是裸的树剖了,对于换根的操作我们可以分类讨论。

1.如果查询的$x$就是根,那答案就是整棵树的最小值。

2.如果以1为根的dfs序中,根在$x$的子树之外,那很明显$x$的子树还是原来的子树。

3.如果以1为根的dfs序中,根在$x$的子树里面的话,画个图就能发现,找到$x$的孩子中作为根的父亲那个点,答案就是整棵树把整个点的子树去掉就行了。

其他地方跟树剖没什么区别…

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long lint;
const int N=100005;
const lint INF=(1ll<<32);
inline lint read()
{
lint s=0,f=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){s=s*10+c-'0';c=getchar();}
return s*f;
}
struct edge
{
int to,nxt;
}edges[N<<1];
int n,m,cnt,rot,tot;
int head[N<<1],son[N],size[N],dep[N],top[N],dl[N],dr[N],rk[N],fa[N];
lint tr[N<<2],tag[N<<2],v[N]; #define lson (o<<1)
#define rson (o<<1|1)
inline void push_up(int o)
{
tr[o]=min(tr[lson],tr[rson]);
}
inline void push_down(int o)
{
if(tag[o]==-1)return;
tag[lson]=tag[rson]=tag[o];
tr[lson]=tr[rson]=tag[o];
tag[o]=-1;
}
inline void build(int o,int l,int r)
{
tag[o]=-1;
if(l==r)
{
tr[o]=v[rk[l]];
return;
}int mid=(l+r)>>1;
build(lson,l,mid);build(rson,mid+1,r);
push_up(o);
}
inline void modify(int o,int l,int r,int ql,int qr,lint val)
{
if(ql<=l&&r<=qr)
{
tag[o]=tr[o]=val;
return;
}push_down(o);
int mid=(l+r)>>1;
if(mid>=ql)modify(lson,l,mid,ql,qr,val);
if(mid+1<=qr)modify(rson,mid+1,r,ql,qr,val);
push_up(o);
}
inline lint query(int o,int l,int r,int ql,int qr)
{
if(ql<=l&&r<=qr)return tr[o];
push_down(o);
int mid=(l+r)>>1;lint res=INF;
if(mid>=ql)res=min(res,query(lson,l,mid,ql,qr));
if(mid+1<=qr)res=min(res,query(rson,mid+1,r,ql,qr));
return res;
} #undef lson
#undef rson
inline void addEdge(int u,int v)
{
edges[++cnt]=(edge){v,head[u]};
head[u]=cnt;
}
#define cur edges[i].to
inline void dfs1(int x)
{
size[x]=1;
for(register int i=head[x];i;i=edges[i].nxt)
if(cur!=fa[x])
{
fa[cur]=x;dep[cur]=dep[x]+1;
dfs1(cur);size[x]+=size[cur];
if(size[son[x]]<size[cur])son[x]=cur;
}
}
inline void dfs2(int x,int t)
{
top[x]=t;dl[x]=++tot;rk[tot]=x;
if(son[x])dfs2(son[x],t);
for(register int i=head[x];i;i=edges[i].nxt)
if(cur!=fa[x]&&cur!=son[x])dfs2(cur,cur);
dr[x]=tot;
}
#undef cur
inline void modify_link(int a,int b,int val)
{
while(top[a]!=top[b])
{
if(dep[top[a]]<dep[top[b]])swap(a,b);
modify(1,1,n,dl[top[a]],dl[a],val);
a=fa[top[a]];
}
if(dep[a]>dep[b])swap(a,b);
modify(1,1,n,dl[a],dl[b],val);
}
inline lint query_tree(int x)
{
if(rot==x)return query(1,1,n,1,n);
if(dl[x]<=dl[rot]&&dl[rot]<=dr[x])
{
int y;
for(register int i=head[x];i;i=edges[i].nxt)
if(dl[edges[i].to]<=dl[rot]&&dl[rot]<=dr[edges[i].to])
{
y=edges[i].to;
break;
}
return min(query(1,1,n,1,dl[y]-1),query(1,1,n,dr[y]+1,n));
}else
{
return query(1,1,n,dl[x],dr[x]);
}
}
int main()
{
n=read();m=read();rot=1;
for(register int i=1;i<n;i++)
{
int u,v;u=read();v=read();
addEdge(u,v);addEdge(v,u);
}
for(register int i=1;i<=n;i++)v[i]=read();
rot=read();
dfs1(1);dfs2(1,1);build(1,1,n);
for(register int i=1;i<=m;i++)
{
int op,x,y,val;op=read();
if(op==1)
{
rot=read();
}else if(op==2)
{
x=read();y=read();val=read();
modify_link(x,y,val);
}else
{
x=read();
printf("%lld\n",query_tree(x));
}
}
}

[日常摸鱼]bzoj3083遥远的国度-树链剖分的更多相关文章

  1. BZOJ3083: 遥远的国度(树链剖分)

    题意 $n$个节点的树,每个点有权值,支持三种操作 1. 换根 2.把$x$到$y$路径上节点权值变为$z$ 3.询问路径最小值 Sol 啥?你说这是TopTree的裸题?那你写去啊 很显然,如果没有 ...

  2. 【bzoj3083】遥远的国度 树链剖分+线段树

    题目描述 描述zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要zcwwzdjn ...

  3. BZOJ 3083 遥远的国度 树链剖分

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 797  Solved: 181[Submit][Status] Descrip ...

  4. BZOJ 3083 遥远的国度(树链剖分+LCA)

    Description 描述zcwwzdjn在追杀十分sb的zhx,而zhx逃入了一个遥远的国度.当zcwwzdjn准备进入遥远的国度继续追杀时,守护神RapiD阻拦了zcwwzdjn的去路,他需要z ...

  5. BZOJ 3083: 遥远的国度(树链剖分+DFS序)

    可以很显而易见的看出,修改就是树链剖分,而询问就是在dfs出的线段树里查询最小值,但由于这道题会修改根节点,所以在查询的时候需判断x是否为root的祖先,如果不是就直接做,是的话应该查询从1-st[y ...

  6. BZOJ 3083 遥远的国度 树链剖分+线段树

    有换根的树链剖分的裸题. 在换根的时候注意讨论. 注意数据范围要开unsigned int或longlong #include<iostream> #include<cstdio&g ...

  7. 洛谷P3979 遥远的国度 树链剖分+分类讨论

    题意:给出一棵树,这棵树每个点有权值,然后有3种操作.操作一:修改树根为rt,操作二:修改u到v路径上点权值为w,操作三:询问以rt为根x子树的最小权值. 解法:如果没有修改树根操作那么这题就是树链剖 ...

  8. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  9. luoguP3979 遥远的国度 树链剖分

    \(1, 2\)操作没什么好说的 对于\(3\)操作,分三种情况讨论下 \(id = rt\)的情况下,查整棵树的最小值即可 如果\(rt\)在\(1\)号点为根的情况下不在\(id\)的子树中,那么 ...

随机推荐

  1. java开发两年,这些线程知识你都不知道,你怎么涨薪?

    前言 什么是线程:程序中负责执行的哪个东东就叫做线程(执行路线,进程内部的执行序列),或者说是进程的子任务. Java中实现多线程有几种方法 继承Thread类: 实现Runnable接口: 实现Ca ...

  2. java开发三年,Java中接口的使用你得知道,不然你凭什么涨薪

    接口概述: 接口是Java语言中的一种引用类型,是方法的"集合",所以接口的内部主要就是定义方法,包含常量,抽象方法(JDK 7及以前),额外增加默认方法和静态方法(JDK 8), ...

  3. list scheduling algorithm 指令调度 —— 笔记

    作者:Yaong 出处:https://www.cnblogs.com/yaongtime/articles/14033444.html 版权:本文版权归作者和博客园共有 转载:欢迎转载,但未经作者同 ...

  4. Linux nginx安装篇

    目录 前言 版本 安装 1.下载 2.安装依赖 3.编译安装 4.启动 5.服务启动 参考资料 前言 最近新申请了一台服务器,需要安装下nginx服务,安装nginx不是第一次,之前反反复复也装过,由 ...

  5. 使用FL Studio来制作停顿的效果

    停顿效果是一种在音乐创作中非常常用的音效,它能起到缓冲的作用,而且能使这段旋律更具节奏感,在比较激情的歌曲中尤为常见.例如知名歌手王力宏演唱的<火力全开>中就使用了停顿效果,为歌曲加了不少 ...

  6. 苹果电脑中怎么快速卸载Flash Player和浏览器扩展应用插件

    Adobe Flash Player是一款轻量级浏览器插件,帮助你在网页浏览过程中享受更广泛的多媒体体验.是一种拓展,与Java一样,成为安全和隐私问题的重要来源.这些都需要手动删除的Flash是令人 ...

  7. 从Guarded Block来看Java中的wait和notify方法

    目录 预备知识 概览 线程同步 wait()方法 wait() wait(long timeout) wait(long timeout, int nanos) notify() & noti ...

  8. 《SpringBoot第一篇:HelloWorld启蒙》

    每篇一律 云对雨,雪对风,晚照对晴空. 来鸿对去雁,宿鸟对鸣虫. --<声律启蒙·一东> 什么是Spring Boot SpringBoot 是为了简化 Spring 应用的创建.运行.调 ...

  9. zabbix地图显示全国延迟

    Zabbix 地图显示全国延迟 1.  效果图 2.  实现方法 将地图.png上传到zabbix为背景,上传红绿点.png为图标.然后新建主机关联模板为ICMP Ping,新建一个拓扑图调用地图为背 ...

  10. JAVA面试宝典分享

    JAVA面试宝典分享 前言 面试题 Java面试题(上) Java面试题(中) Java面试题(下) 参考答案 其他补充内容: 项目经验 项目介绍 项目开发流程 项目管理 系统架构 第三方工具(插件) ...