Day 1

NTT

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define m_k make_pair
#define mod 998244353
#define int long long
using namespace std;
const int N=4*1e5+100;
int n,l,c,len,inv[N],rev[N],f[N],g[N];
int fac[N];
inline int m_pow(int a,int b)
{
a%=mod;
int ans=1;
while (b)
{
if (b&1) ans=(ans*a)%mod;
b>>=1;
a=(a*a)%mod;
}
return ans;
}
inline void change(int len)
{
for (int i=0;i<len;i++)
{
rev[i]=rev[i>>1]>>1;
if (i&1) rev[i]|=len>>1;
}
}
inline int ntt(int y[],int len,int v)
{
for (int i=0;i<len;i++) if (i<rev[i]) swap(y[i],y[rev[i]]);
for (int i=2;i<=len;i<<=1)
{
int step=m_pow(3,(mod-1)/i);
if (v==-1) step=m_pow(step,mod-2);
for (int j=0;j<len;j+=i)
{
int x=1;
for (int k=j;k<j+i/2;k++)
{
int a=y[k],b=(x*y[k+i/2])%mod;
y[k]=(a+b)%mod;
y[k+i/2]=(a-b+mod)%mod;
x=(x*step)%mod;
}
}
}
if (v==-1)
{
int invlen=m_pow(len,mod-2);
for (int i=0;i<len;i++) y[i]=(y[i]*invlen)%mod;
}
}
signed main()
{
scanf("%lld%lld%lld",&n,&l,&c);
c%=mod;
if (c==1)
{
for (int i=1;i<=n;i++) printf("%lld\n",l%mod);
return 0;
}
fac[0]=1;
for (int i=1;i<=n;i++) fac[i]=(fac[i-1]*i)%mod;
inv[n]=m_pow(fac[n],mod-2);
for (int i=n-1;i>=0;i--) inv[i]=(inv[i+1]*(i+1))%mod;
len=1;
while (len<=2*n) len<<=1;
int invc=m_pow(c,mod-2);
for (int i=0;i<=n;i++)
{
f[i]=inv[i];
if (i==1) f[i]=(f[i]*l)%mod;
else
{
int tmp;
if (i==0) tmp=c;
else tmp=m_pow(invc,i-1);
f[i]=(f[i]*tmp)%mod;
f[i]=(f[i]*(1-m_pow(tmp,l)+mod)%mod)%mod;
f[i]=(f[i]*m_pow(1-tmp+mod,mod-2))%mod;
}
if (i&1) f[i]=(mod-f[i])%mod;
}
change(len);
ntt(f,len,1),ntt(g,len,1);
for (int i=0;i<len;i++) f[i]=(f[i]*g[i])%mod;
ntt(f,len,-1);
int ret=c;
ret=(ret*(1-m_pow(c,l)+mod)%mod)%mod;
ret=(ret*m_pow(1-c+mod,mod-2))%mod;
for (int i=1;i<=n;i++) f[i]=(ret-(f[i]*fac[i])%mod+mod)%mod;
int ans=0;
for (int i=1;i<=n;i++) printf("%lld\n",f[i]);
}
二分套二分
#pragma GCC optimize(2)
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define m_k make_pair
#define int long long
using namespace std;
const int N=2*1e5+100;
int n,m,w,b[N],vi[N],h[N],k;
int MAX,f[N][21],lg[N];
long long si[N],sum[N],ans;
struct node
{
int l,r,L,R,id;
}sh[N];
node a[N],c[N];
inline int min(int a,int b){return((a<b)?a:b);}
inline int max(int a,int b){return((a>b)?a:b);}
inline int read()
{
int f=1,x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
return x*f;
}
bool cmp(node a,node b)
{
return (a.L<b.L || (a.L==b.L && a.R<b.R));
}
bool cmp1(node a,node b)
{
return (a.l<b.l || (a.l==b.l && a.r<b.r));
}
namespace tree
{
int sh[N];
inline int lowbit(int x){return(x&(-x));}
inline void change(int x,int v)
{
while (x>0)
{
sh[x]+=v;
x-=lowbit(x);
}
}
inline int query(int x)
{
int ans=0;
while (x<=w)
{
ans+=sh[x];
x+=lowbit(x);
}
return ans;
}
}
inline void uni()
{
int r=n;n=0;
for (int i=1;i<=r;)
{
c[++n]=sh[i];
int j=i;
while (j<=r && sh[i].L==sh[j].L && sh[i].R==sh[j].R) j++;
i=j;
}
for (int i=1;i<=n;i++) sh[i]=c[i];
}
inline int get(int l,int r)
{
int len=r-l+1,p=lg[len];
return max(f[l][p],f[r-(1<<p)+1][p]);
}
inline int find_l(int i){return lower_bound(h+1,h+1+k,a[i].l)-h;}
inline int find_r(int i){return upper_bound(h+1,h+1+k,a[i].r)-h-1;}
signed main()
{
m=read(),n=read();
for (int i=1;i<=n;i++)
{
sh[i].l=read(),sh[i].r=read();
b[++w]=sh[i].l,b[++w]=sh[i].r;
}
sort(b+1,b+1+w);
w=unique(b+1,b+1+w)-b-1;
for (int i=1;i<=n;i++)
{
sh[i].L=lower_bound(b+1,b+1+w,sh[i].l)-b;
sh[i].R=lower_bound(b+1,b+1+w,sh[i].r)-b;
sh[i].id=i;
}
sort(sh+1,sh+1+n,cmp);
uni();
for (int i=1;i<=n;)
{
int j=i;
while (j<=n && sh[j].L==sh[i].L)
{
tree::change(sh[j].R,1);
j++;
}
for (int k=i;k<j;k++)
{
tree::change(sh[k].R,-1);
if (tree::query(sh[k].R)!=0) vi[k]=1;
tree::change(sh[k].R,1);
}
i=j;
}
w=0;
for (int i=1;i<=n;i++) if (!vi[i]) a[++w]=sh[i];
sort(a+1,a+1+w,cmp1);
for (int i=1;i<=w;i++) f[i][0]=a[i].r-a[i].l,lg[i]=log(i)/log(2);
for (int j=1;j<=20;j++)
{
for (int i=1;i<=w;i++)
{
if (i+(1<<j)-1>w) break;
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
while (m--)
{
ans=0;
k=read();
for (int i=1;i<=k;i++) h[i]=read();
sort(h+1,h+1+k);
for (int i=1;i<=k;i++) si[i]=si[i-1]+1ll*i*h[i],sum[i]=sum[i-1]+h[i];
for (int i=1;i<=w;)
{
int l=i,r=w,nowl=find_l(i),nowr=find_r(i);
while (l<r)
{
int mid=l+((r-l+1)>>1);
if (find_l(mid)==nowl && find_r(mid)==nowr) l=mid;
else r=mid-1;
}
ans=max(ans,1ll*get(i,l)+si[nowr]-si[nowl-1]-1ll*(nowl-1)*(sum[nowr]-sum[nowl-1]));
i=l+1;
}
printf("%lld\n",ans);
}
}

广义SAM

wqs二分+随机化扰动

#include <bits/stdc++.h>
#define mod 1000000007
#define inv2 500000004
#define int long long
using namespace std;
const int N=4641588,M=1e5+100;
int n,phi[N+100],v[N+100],p[N],w;
unordered_map <int,int> get_phi;
int getphi(int n)
{
if (n<=N) return phi[n];
if (get_phi[n]) return get_phi[n];
int ans=((n%mod)*((n+1)%mod))%mod;
ans=(ans*inv2)%mod;
for (int l=2,r;l<=n;l=r+1)
{
r=n/(n/l);
ans=(ans-getphi(n/l)*((r-l+1)%mod)%mod+mod)%mod;
}
get_phi[n]=ans;
return ans;
}
inline int f(int n)
{
return (2*getphi(n)%mod-1+mod)%mod;
}
signed main()
{
scanf("%lld",&n);
phi[1]=1;
for (int i=2;i<=N;i++)
{
if (!v[i])
{
v[i]=i,p[++w]=i;
phi[i]=i-1;
}
for (int j=1;j<=w;j++)
{
if (p[j]>v[i] || p[j]>N/i) break;
v[p[j]*i]=v[i];
if (i%p[j]==0) phi[i*p[j]]=(phi[i]*p[j])%mod;
else phi[i*p[j]]=(phi[i]*(p[j]-1))%mod;
}
}
for (int i=1;i<=N;i++) phi[i]=(phi[i]+phi[i-1])%mod;
int ans=0;
for (int l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans=(ans+((getphi(r)-getphi(l-1)+mod)%mod*f(n/l))%mod)%mod;
}
printf("%lld\n",ans);
}

LCT

#include <bits/stdc++.h>
using namespace std;
const int N=3*1e5+100;
int n,m,son[N][2],fa[N],tag[N],root;
int sz[N],place[N],now,realson[N],minde[N];
int tot,first[N],nxt[N*2],point[N*2];
struct node
{
int val,id;
}sh[N];
long long ret,ans,val[N],sum[N];
inline void add_edge(int x,int y)
{
tot++;
nxt[tot]=first[x];
first[x]=tot;
point[tot]=y;
}
inline int read()
{
int f=1,x=0;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
while(s>='0'&&s<='9'){x=x*10+s-'0';s=getchar();}
x*=f;
return x;
}
inline int sf(int x)
{
return (son[fa[x]][1]==x);
}
inline bool nroot(int x)
{
return (son[fa[x]][0]==x||son[fa[x]][1]==x);
}
inline void rev(int x)
{
swap(son[x][0],son[x][1]);
tag[x]^=1;
}
inline void pushup(int x)
{
sum[x]=sum[son[x][0]]+sum[son[x][1]]+val[x];
if (son[x][0]) minde[x]=minde[son[x][0]];
else minde[x]=x;
}
inline void pushdown(int x)
{
if (tag[x])
{
if (son[x][0]) rev(son[x][0]);
if (son[x][1]) rev(son[x][1]);
tag[x]=0;
}
}
inline void pushall(int x)
{
if (nroot(x)) pushall(fa[x]);
pushdown(x);
}
inline void connect(int x,int y,int dir)
{
son[y][dir]=x;
fa[x]=y;
}
inline void rotate(int x)
{
int f,gf,xd,fd,s;
f=fa[x],gf=fa[f],xd=sf(x),fd=sf(f),s=son[x][xd^1];
if (nroot(f)) connect(x,gf,fd);
connect(f,x,xd^1);
if (s) connect(s,f,xd);
fa[x]=gf,son[f][xd]=s;
pushup(f),pushup(x);
}
inline void splay(int x)
{
pushall(x);
while (nroot(x))
{
if (!nroot(fa[x])) rotate(x);
else if (sf(fa[x])==sf(x)) rotate(fa[x]),rotate(x);
else rotate(x),rotate(x);
}
}
inline void access(int x)
{
for (int y=0;x;x=fa[x])
{
splay(x);
son[x][1]=y;
if (y==0) realson[x]=0;
else realson[x]=minde[y];
if (place[x]<=now) val[x]=n-sz[x]-sz[minde[y]];
pushup(x);
y=x;
root=x;
}
}
inline void makeroot(int x)
{
access(x);
splay(x);
rev(x);
}
inline int findroot(int x)
{
access(x);
splay(x);
while (son[x][0]) pushdown(x),x=son[x][0];
splay(x);
return x;
}
inline void link(int x,int y)
{
makeroot(x);
if (findroot(y)!=x) fa[x]=y;
}
void dfs(int x,int fa)
{
if (x!=1) link(x,fa);
sz[x]=1;
for (int i=first[x];i!=-1;i=nxt[i])
{
int u=point[i];
if (u==fa) continue;
dfs(u,x);
sz[x]+=sz[u];
}
}
inline bool cmp(node a,node b)
{
return a.val>b.val;
}
int main()
{
tot=-1;
memset(first,-1,sizeof(first));
memset(nxt,-1,sizeof(nxt));
n=read();
for (int i=1;i<=n;i++) sh[i].val=read(),sh[i].id=i,minde[i]=i;
sort(sh+1,sh+1+n,cmp);
for (int i=1;i<=n;i++) place[sh[i].id]=i;
for (int i=1;i<n;i++)
{
int u,v;
u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
// link(u,v);
}
dfs(1,1);makeroot(1);
for (int i=1;i<=n;)
{
// if (minde[0]!=0) printf("OK\n");
now=i-1;
int j=i;
while (j<=n && sh[i].val==sh[j].val)
{
access(sh[j].id);
ans+=ret+sum[root];
j++;
}
for (int k=i;k<j;k++)
{
int x=sh[k].id;
ret+=sz[x];
if (realson[x]!=0)
{
splay(x);
val[x]=n-sz[x]-sz[realson[x]];
pushup(x);
}
}
i=j;
}
printf("%lld\n",ans);
}

主席树

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
typedef long long ll;
typedef unsigned un;
typedef std::string str;
typedef std::pair<ll,ll> pll;
ll read(){ll x=0,f=1;char c=getchar();while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}return f*x;}
ll max(ll a,ll b){return a>b?a:b;}
void umax(ll& a,ll t){if(t>a)a=t;}
const ll INF=1ll<<58;
#define MAXN 300011
ll diff,fx[MAXN],a[MAXN],c=0;
ll place(ll val){return std::lower_bound(fx+1,fx+diff+1,val)-fx;}
struct Edge
{
ll v,nxt;
}e[MAXN<<1|1];
ll ecnt=0,last[MAXN];
void adde(ll u,ll v)
{
++ecnt;
e[ecnt].v=v;
e[ecnt].nxt=last[u],last[u]=ecnt;
}
ll dfn[MAXN],ed[MAXN],w[MAXN],fa[MAXN], cur=0;
void dfs(ll u)
{
dfn[u]=++cur;w[cur]=a[u];
for(ll i=last[u];i;i=e[i].nxt)
{
ll v=e[i].v;
if(v==fa[u])continue;
fa[v]=u;
dfs(v);
}
ed[u]=cur;
}
struct node
{
ll sum;
int lson,rson;
}t[MAXN<<5|1];
int root[MAXN],cnt=0,n;
#define rt t[num]
void insert(int pre,int& num,un pos,un l=1,un r=diff)
{
num=++cnt;
rt=t[pre],++rt.sum;
if(l==r)return;
un mid=(l+r)>>1;
if(pos<=mid)insert(t[pre].lson,rt.lson,pos,l,mid);
else insert(t[pre].rson,rt.rson,pos,mid+1,r);
}
void Qsum(int pre,int num,un pos,un l=1,un r=diff)
{
if(!pos)return;
if(l==r){c+=rt.sum-t[pre].sum;return;}
un mid=(l+r)>>1; if(pos<=mid)Qsum(t[pre].lson,rt.lson,pos,l,mid);
else
{
c+=t[rt.lson].sum-t[t[pre].lson].sum;
Qsum(t[pre].rson,rt.rson,pos,mid+1,r);
}
} int main()
{
n=read();
for(ll i=1;i<=n;++i)fx[++diff]=a[i]=read();
std::sort(fx+1,fx+diff+1),diff=std::unique(fx+1,fx+diff+1)-fx-1;
for(ll i=1;i<n;++i){ll u=read(),v=read();adde(u,v),adde(v,u);}
dfs(1);
for(ll i=1;i<=n;++i)w[i]=place(w[i]),insert(root[i-1],root[i],w[i]);
ll ans=0;
for(ll u=1;u<=n;++u)
{
for(ll i=last[u];i;i=e[i].nxt)
{
ll v=e[i].v;
if(v==fa[u])
{
c=0;
Qsum(root[0],root[dfn[u]-1],w[dfn[u]]-1),Qsum(root[ed[u]],root[n],w[dfn[u]]-1);
ans+=c*(ed[u]-dfn[u]+1);
continue;
}
c=0;
Qsum(root[dfn[v]-1],root[ed[v]],w[dfn[u]]-1);
//printf("%lld nodes in sub(%lld)\n",c,v);
ans+=c*(n-(ed[v]-dfn[v]+1));
}
}
printf("%lld",ans);
return 0;
}

树状数组

#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
#define m_p make_pair
#define sz(x) (int)x.size()
#define out(x) cerr<<#x<<" = "<<x<<" "
#define outln(x) cerr<<#x<<" = "<<x<<endl
#define outarr(x,l,r) cerr<<#x"["<<l<<"-"<<r<<"] = "; for (int _i=l;_i<=r;++_i) cerr<<x[_i]<<" ";cerr<<endl;
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
#define gc() getchar()
//char buf[1<<23],*p1=buf,*p2=buf;
//#define gc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
template <class T> void read(T &x)
{
x=0; char c=gc(); int flag=0;
while (c<'0'||c>'9') flag|=(c=='-'),c=gc();
while (c>='0'&&c<='9') x=(x<<3)+(x<<1)+(c^48),c=gc();
if (flag) x=-x;
}
template <class T> T _max(T a,T b){return a>b ? a : b;}
template <class T> T _min(T a,T b){return a<b ? a : b;}
template <class T> bool checkmax(T &a,T b){return b>a ? a=b,1 : 0;}
template <class T> bool checkmin(T &a,T b){return b<a ? a=b,1 : 0;}
const int N=300005;
int n,a[N],sz[N],dfn[N],dfs_clock=0,p[N],fa[N];
vector <int> G[N];
void add_edge(int x,int y)
{
G[x].push_back(y);
} void dfs(int x,int f)
{
sz[x]=1; dfn[x]=++dfs_clock; fa[x]=f;
for (int i=0;i<sz(G[x]);++i)
{
int to=G[x][i];
if (to==f) continue;
dfs(to,x);
sz[x]+=sz[to];
}
} void init()
{
read(n);
for (int i=1;i<=n;++i)
{
read(a[i]);
}
for (int i=1,u,v;i<n;++i)
{
read(u); read(v);
add_edge(u,v);
add_edge(v,u);
}
dfs(1,0);
} bool cmp(int x,int y){return a[x]<a[y];}
namespace BIT
{
int C[N];
void update(int x,int num)
{
for (;x<=n;x+=(x&(-x))) C[x]+=num;
} int query(int x)
{
int ans=0;
for (;x;x-=(x&(-x))) ans+=C[x];
return ans;
} int query(int l,int r)
{
return query(r)-query(l-1);
}
} void solve()
{
ll ans=0;
for (int i=1;i<=n;++i) p[i]=i;
sort(p+1,p+n+1,cmp);
for (int i=1,pre=0;i<=n;++i)
{
int x=p[i];
for (int j=0;j<sz(G[x]);++j)
{
int to=G[x][j];
if (to!=fa[x])
{
ans+=(ll)BIT::query(dfn[to],dfn[to]+sz[to]-1)*(n-sz[to]);
}
else
{
ans+=(ll)(BIT::query(1,n)-BIT::query(dfn[x],dfn[x]+sz[x]-1))*sz[x];
}
}
if (a[p[i]]==a[p[i+1]]) continue;
for (int j=pre+1;j<=i;++j)
{
BIT::update(dfn[p[j]],1);
}
pre=i;
}
printf("%lld\n",ans);
} int main()
{
init();
solve();
return 0;
}

ZJU-Summer Camp Problem的更多相关文章

  1. HDU 2795 Billboard (线段树)

    Billboard Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  2. 杭电 HDU ACM 2795 Billboard(线段树伪装版)

    Billboard Time Limit: 20000/8000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  3. hdu1879 继续畅通project(最小生成树)

    继续畅通project Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  4. 【推导】【数学期望】【冒泡排序】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem C. Earthquake

    题意:两地之间有n条不相交路径,第i条路径由a[i]座桥组成,每座桥有一个损坏概率,让你确定一个对所有桥的检测顺序,使得检测所需的总期望次数最小. 首先,显然检测的时候,是一条路径一条路径地检测,跳跃 ...

  5. 【线段树】【扫描线】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem A. Donut

    题意:平面上n个点,每个点带有一个或正或负的权值,让你在平面上放一个内边长为2l,外边长为2r的正方形框,问你最大能圈出来的权值和是多少? 容易推出,能框到每个点的 框中心 的范围也是一个以该点为中心 ...

  6. 【取对数】【哈希】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem J. Bobby Tables

    题意:给你一个大整数X的素因子分解形式,每个因子不超过m.问你能否找到两个数n,k,k<=n<=m,使得C(n,k)=X. 不妨取对数,把乘法转换成加法.枚举n,然后去找最大的k(< ...

  7. 【BFS】【最小生成树】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem G. We Need More Managers!

    题意:给你n个点,点带权,任意两点之间的边权是它们的点权的异或值中“1”的个数,问你该图的最小生成树. 看似是个完全图,实际上有很多边是废的.类似……卡诺图的思想?从读入的点出发BFS,每次只到改变它 ...

  8. 【状压dp】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem E. Guessing Game

    题意:给你n个两两不同的零一串,Alice在其中选定一个,Bob去猜,每次询问某一位是0 or 1.问你最坏情况下最少要猜几次. f(22...2)表示当前状态的最小步数,2表示这位没确定,1表示确定 ...

  9. 【推导】【单调性】Petrozavodsk Winter Training Camp 2018 Day 1: Jagiellonian U Contest, Tuesday, January 30, 2018 Problem B. Tribute

    题意:有n个数,除了空集外,它们会形成2^n-1个子集,给你这些子集的和的结果,让你还原原来的n个数. 假设原数是3 5 16, 那么它们形成3 5 8 16 19 21 24, 那么第一轮取出开头的 ...

随机推荐

  1. Java知识系统回顾整理01基础04操作符06三元运算符

    一.三元运算符 表达式?值1:值2 如果表达式为真 返回值1 如果表达式为假 返回值2 if语句学习链接:if语句 public class HelloWorld { public static vo ...

  2. 多测试_常用linux命令_002

    linux 介绍 常用的操作系统(os): windows .dos.android.ios.unix.linux linux系统:是一个免费.开源的操作系统 支持多cpu,多用户,多线程的操作系统, ...

  3. element中过滤器filters的使用(开发小记)

    之前在开发过程中遇到这么一个问题,一串数据需要在el-table中展示,其中含有金额字段,需要将其转换成标准数据格式,即三位一个逗号间隔. 今年刚毕业就上手项目了,第一次接触的Vue,开发经验少,也忘 ...

  4. 联赛模拟测试17 A. 简单的区间 启发式合并

    题目描述 分析 我们要找的是一段区间的和减去该区间的最大值能否被 \(k\) 整除 那么对于一段区间,我们可以先找出区间中的最大值 然后枚举最大值左边的后缀与最大值右边的前缀之和是否能被 \(k\) ...

  5. 【树形DP】BZOJ 3829 Farmcraft

    题目内容 mhy住在一棵有n个点的树的1号结点上,每个结点上都有一个妹子i. mhy从自己家出发,去给每一个妹子都送一台电脑,每个妹子拿到电脑后就会开始安装zhx牌杀毒软件,第i个妹子安装时间为Ci. ...

  6. 第一章 Linux操作系统及其历史介绍

    一.什么是操作系统 1.基本含义: 简称OS 是计算机系统中必不可少的基础系统软件,是应用程序运行和用户操作必备的基础环境 操作系统就是一个人与计算机之间的中介 2.组成方式: 操作系统的组成: 计算 ...

  7. OpenCV开发笔记(七十一):红胖子8分钟带你深入级联分类器训练

    前言   红胖子,来也!  做图像处理,经常头痛的是明明分离出来了(非颜色的),分为几块区域,那怎么知道这几块区域到底哪一块是我们需要的,那么这部分就涉及到需要识别了.  识别可以自己写模板匹配.特征 ...

  8. Linux用户和组管理命令-用户创建useradd

    用户管理命令 useradd usermod userdel 组帐号维护命令 groupadd groupmod groupdel 用户创建 useradd 命令可以创建新的Linux用户 格式: u ...

  9. 开源 Open Source

    FREE 开源不等于免费 代表自由 开源 Open Source软件和源代码提供给所有人,自由分发软件和源代码能够修改和创建衍生作品软件分类:商业   收费使用  代码不公开共享  免费用 代码不公开 ...

  10. postgresql使用规范解读

    表设计规范1.建议能使用小字节数类型,就不要用大字节数类型2.建议能用varchar(N).text就不用char(N):3.建议使用default NULL,而不用default '':4.建议使用 ...