J.U.C - AQS

java.util.concurrent(J.U.C)大大提高了并发性能,AQS 被认为是 J.U.C 的核心。它核心是利用volatile和一个维护队列。

AQS其实就是java.util.concurrent.locks.AbstractQueuedSynchronizer这个类。 阅读Java的并发包源码你会发现这个类是整个java.util.concurrent的核心之一,也可以说是阅读整个并发包源码的一个突破口。

比如读ReentrantLock的源码你会发现其核心是它的一个内部类Sync:

整个包中很多类的结构都是如此,比如Semaphore,CountDownLatch都有一个内部类Sync,而所有的Sync都是继承自AbstractQueuedSynchronizer。 所以说想要读懂Java并发包的代码,首先得读懂这个类。

AQS简核心是通过一个共享变量来同步状态,变量的状态由子类去维护,而AQS框架做的是:

  • 线程阻塞队列的维护
  • 线程阻塞和唤醒

CountdownLatch

用来控制一个线程等待多个线程。

维护了一个计数器 cnt,每次调用 countDown() 方法会让计数器的值减 1,减到 0 的时候,那些因为调用 await() 方法而在等待的线程就会被唤醒。

public class CountdownLatchExample {

    public static void main(String[] args) throws InterruptedException {
final int totalThread = 10;
CountDownLatch countDownLatch = new CountDownLatch(totalThread);
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < totalThread; i++) {
executorService.execute(() -> {
System.out.print("run..");
countDownLatch.countDown();
});
}
countDownLatch.await();
System.out.println("end");
executorService.shutdown();
}
}
run..run..run..run..run..run..run..run..run..run..end

CyclicBarrier

用来控制多个线程互相等待,只有当多个线程都到达时,这些线程才会继续执行。

和 CountdownLatch 相似,都是通过维护计数器来实现的。但是它的计数器是递增的,每次执行 await() 方法之后,计数器会加 1,直到计数器的值和设置的值相等,等待的所有线程才会继续执行。和 CountdownLatch 的另一个区别是,CyclicBarrier 的计数器可以循环使用,所以它才叫做循环屏障。

下图应该从下往上看才正确。

public class CyclicBarrierExample {
public static void main(String[] args) throws InterruptedException {
final int totalThread = 10;
CyclicBarrier cyclicBarrier = new CyclicBarrier(totalThread);
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < totalThread; i++) {
executorService.execute(() -> {
System.out.print("before..");
try {
cyclicBarrier.await();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (BrokenBarrierException e) {
e.printStackTrace();
}
System.out.print("after..");
});
}
executorService.shutdown();
}
}
before..before..before..before..before..before..before..before..before..before..after..after..after..after..after..after..after..after..after..after..

Semaphore

Semaphore 就是操作系统中的信号量,可以控制对互斥资源的访问线程数。

以下代码模拟了对某个服务的并发请求,每次只能有 3 个客户端同时访问,请求总数为 10。

public class SemaphoreExample {
public static void main(String[] args) {
final int clientCount = 3;
final int totalRequestCount = 10;
Semaphore semaphore = new Semaphore(clientCount);
ExecutorService executorService = Executors.newCachedThreadPool();
for (int i = 0; i < totalRequestCount; i++) {
executorService.execute(()->{
try {
semaphore.acquire();
System.out.print(semaphore.availablePermits() + " ");
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
semaphore.release();
}
});
}
executorService.shutdown();
}
}
2 1 2 2 2 2 2 1 2 2

J.U.C - 除了基于AQS的其它组件(FutureTask和ForkJoin)

FutureTask

在介绍 Callable 时我们知道它可以有返回值,返回值通过 Future 进行封装。FutureTask 实现了 RunnableFuture 接口,该接口继承自 Runnable 和 Future 接口,这使得 FutureTask 既可以当做一个任务执行,也可以有返回值。

public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V>

FutureTask 可用于异步获取执行结果或取消执行任务的场景。当一个计算任务需要执行很长时间,那么就可以用 FutureTask 来封装这个任务,主线程在完成自己的任务之后再去获取结果。

public class FutureTaskExample {
public static void main(String[] args) throws ExecutionException, InterruptedException {
FutureTask<Integer> futureTask = new FutureTask<Integer>(new Callable<Integer>() {
@Override
public Integer call() throws Exception {
int result = 0;
for (int i = 0; i < 100; i++) {
Thread.sleep(10);
result += i;
}
return result;
}
}); Thread computeThread = new Thread(futureTask);
computeThread.start(); Thread otherThread = new Thread(() -> {
System.out.println("other task is running...");
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
});
otherThread.start();
System.out.println(futureTask.get());
}
}
other task is running...
4950

BlockingQueue

java.util.concurrent.BlockingQueue 接口有以下阻塞队列的实现:

  • FIFO 队列 :LinkedBlockingQueue、ArrayBlockingQueue(固定长度)
  • 优先级队列 :PriorityBlockingQueue

提供了阻塞的 take() 和 put() 方法:如果队列为空 take() 将阻塞,直到队列中有内容;如果队列为满 put() 将阻塞,直到队列有空闲位置。

使用 BlockingQueue 实现生产者消费者问题

public class ProducerConsumer {

    private static BlockingQueue<String> queue = new ArrayBlockingQueue<>(5);

    private static class Producer extends Thread {
@Override
public void run() {
try {
queue.put("product");
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("produce..");
}
} private static class Consumer extends Thread { @Override
public void run() {
try {
String product = queue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.print("consume..");
}
}
}
public static void main(String[] args) {
for (int i = 0; i < 2; i++) {
Producer producer = new Producer();
producer.start();
}
for (int i = 0; i < 5; i++) {
Consumer consumer = new Consumer();
consumer.start();
}
for (int i = 0; i < 3; i++) {
Producer producer = new Producer();
producer.start();
}
}
produce..produce..consume..consume..produce..consume..produce..consume..produce..consume..

ForkJoin

主要用于并行计算中,和 MapReduce 原理类似,都是把大的计算任务拆分成多个小任务并行计算。

public class ForkJoinExample extends RecursiveTask<Integer> {
private final int threhold = 5;
private int first;
private int last; public ForkJoinExample(int first, int last) {
this.first = first;
this.last = last;
} @Override
protected Integer compute() {
int result = 0;
if (last - first <= threhold) {
// 任务足够小则直接计算
for (int i = first; i <= last; i++) {
result += i;
}
} else {
// 拆分成小任务
int middle = first + (last - first) / 2;
ForkJoinExample leftTask = new ForkJoinExample(first, middle);
ForkJoinExample rightTask = new ForkJoinExample(middle + 1, last);
leftTask.fork();
rightTask.fork();
result = leftTask.join() + rightTask.join();
}
return result;
}
}
public static void main(String[] args) throws ExecutionException, InterruptedException {
ForkJoinExample example = new ForkJoinExample(1, 10000);
ForkJoinPool forkJoinPool = new ForkJoinPool();
Future result = forkJoinPool.submit(example);
System.out.println(result.get());
}

ForkJoin 使用 ForkJoinPool 来启动,它是一个特殊的线程池,线程数量取决于 CPU 核数。

public class ForkJoinPool extends AbstractExecutorService

ForkJoinPool 实现了工作窃取算法来提高 CPU 的利用率。每个线程都维护了一个双端队列,用来存储需要执行的任务。工作窃取算法允许空闲的线程从其它线程的双端队列中窃取一个任务来执行。窃取的任务必须是最晚的任务,避免和队列所属线程发生竞争。例如下图中,Thread2 从 Thread1 的队列中拿出最晚的 Task1 任务,Thread1 会拿出 Task2 来执行,这样就避免发生竞争。但是如果队列中只有一个任务时还是会发生竞争。

J.U.C - 写在最后

自古深情留不住,总是套路得人心。学习就是不断钻研,不断突破,最后总结初自己得思维模式(套路),作为知识工作者,形成一个体系结构是多么重要,像AQS体系就是完完全全一个套路啊!

并发编程实战-J.U.C核心包的更多相关文章

  1. 【Java并发编程实战】-----“J.U.C”:Exchanger

    前面介绍了三个同步辅助类:CyclicBarrier.Barrier.Phaser,这篇博客介绍最后一个:Exchanger.JDK API是这样介绍的:可以在对中对元素进行配对和交换的线程的同步点. ...

  2. 【Java并发编程实战】-----“J.U.C”:CountDownlatch

    上篇博文([Java并发编程实战]-----"J.U.C":CyclicBarrier)LZ介绍了CyclicBarrier.CyclicBarrier所描述的是"允许一 ...

  3. 【Java并发编程实战】-----“J.U.C”:CyclicBarrier

    在上篇博客([Java并发编程实战]-----"J.U.C":Semaphore)中,LZ介绍了Semaphore,下面LZ介绍CyclicBarrier.在JDK API中是这么 ...

  4. 【Java并发编程实战】-----“J.U.C”:ReentrantReadWriteLock

    ReentrantLock实现了标准的互斥操作,也就是说在某一时刻只有有一个线程持有锁.ReentrantLock采用这种独占的保守锁直接,在一定程度上减低了吞吐量.在这种情况下任何的"读/ ...

  5. 【Java并发编程实战】-----“J.U.C”:Semaphore

    信号量Semaphore是一个控制访问多个共享资源的计数器,它本质上是一个"共享锁". Java并发提供了两种加锁模式:共享锁和独占锁.前面LZ介绍的ReentrantLock就是 ...

  6. 【Java并发编程实战】-----“J.U.C”:ReentrantLock之三unlock方法分析

    前篇博客LZ已经分析了ReentrantLock的lock()实现过程,我们了解到lock实现机制有公平锁和非公平锁,两者的主要区别在于公平锁要按照CLH队列等待获取锁,而非公平锁无视CLH队列直接获 ...

  7. 【Java并发编程实战】-----“J.U.C”:ReentrantLock之一简介

    注:由于要介绍ReentrantLock的东西太多了,免得各位客官看累,所以分三篇博客来阐述.本篇博客介绍ReentrantLock基本内容,后两篇博客从源码级别分别阐述ReentrantLock的l ...

  8. 【Java并发编程实战】-----“J.U.C”:锁,lock

    在java中有两种方法实现锁机制,一种是在前一篇博客中([java7并发编程实战]-----线程同步机制:synchronized)介绍的synchronized,而另一种是比synchronized ...

  9. 【Java并发编程实战】----- AQS(四):CLH同步队列

    在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形.其主要从两方面进行了改造:节点的结构与节点等待机制.在结构上引入了头 ...

随机推荐

  1. 直播软件开发之Java音视频解决方案:音视频基础知识

    概念 从信息论的观点来看,描述信源的数据是信息和数据冗余之和,即:数据=信息+数据冗余.音频信号在时域和频域上具有相关性,也即存在数据冗余.将音频作为一个信源,音频编码的实质是减少音频中的冗余. 拟信 ...

  2. Java工程师高薪训练营-第一阶段 开源框架源码解析-模块一 持久层框架涉及实现及MyBatis源码分析-任务一:自定义持久层框架

    目录 任务一:自定义持久层框架 1.1 JDBC回顾及问题分析 1.2 自定义持久层框架思路分析 1.3 IPersistence_Test编写 1.3.1 XXXMapper.xml详解 1.3.2 ...

  3. leetcode72:combinations

    题目描述 给出两个整数n和k,返回从1到n中取k个数字的所有可能的组合 例如: 如果n=4,k=2,结果为 [↵ [2,4],↵ [3,4],↵ [2,3],↵ [1,2],↵ [1,3],↵ [1, ...

  4. 在pgsql库用触发器自动触发PostgreSQL的存储过程,实现插入。

    需求:在对表A 执行 insert操作时,筛选符合条件的数据 insert到表B中,编写为存储过程(postgreSQL数据库) [筛选条件]:1. dd !="A" 或是 dd为 ...

  5. SpringBoot第九集:整合JSP和模板引擎Freemarker/Thymeleaf(2020最新最易懂)

    SpringBoot第九集:整合JSP和模板引擎(2020最新最易懂) 当客户通过前端页面提交请求后,我们以前是怎么做的?后端接收请求数据,处理请求,把响应结果交给模板引擎JSP,最后将渲染后的JSP ...

  6. 深度探秘.NET 5.0

    今年11月10号 .NET 5.0 如约而至.这是.NET All in one后的第一个版本,虽然不是LTS(Long term support)版本,但是是生产环境可用的. 有微软的背书,微软从. ...

  7. 将CSV的数据发送到kafka(java版)

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. http服务器文件名大小写忽略

    问题 文件从windows里面放到nginx里面去的时候,文件在windows下面是大小写忽略,也就是不论大小写都可以匹配的,而到linux下面的时候,因为linux是区分大小写的,也就是会出现无法忽 ...

  9. linux笔记【简版】

    1.linux简介 kernel 内核 shell 外壳 (类似win上的cmd) sh,Bash:#root,$user csh:#root,%user filesystem 文件管理系统 2.优势 ...

  10. Python_微信开发

    <!-- 发消息功能 --> 0.微信开发的2个库 pip install werobot pip install 1.新建项目 2.项目下新建 robot 的app 3.写robot.p ...