• 原题如下:

    Coneology
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 4937   Accepted: 1086

    Description

    A student named Round Square loved to play with cones. He would arrange cones with different base radii arbitrarily on the floor and would admire the intrinsic beauty of the arrangement. The student even began theorizing about how some cones dominate other cones: a cone A dominates another cone B when cone B is completely within the cone A. Furthermore, he noted that there are some cones that not only dominate others, but are themselves dominated, thus creating complex domination relations. After studying the intricate relations of the cones in more depth, the student reached an important conclusion: there exist some cones, all-powerful cones, that have unique properties: an all-powerful cone is not dominated by any other cone. The student became so impressed by the mightiness of the all-powerful cones that he decided to worship these all-powerful cones.

    Unfortunately, after having arranged a huge number of cones and having worked hard on developing this grandiose cone theory, the student become quite confused with all these cones, and he now fears that he might worship the wrong cones (what if there is an evil cone that tries to trick the student into worshiping it?). You need to help this student by finding the cones he should worship.

    Input

    The input le specifies an arrangement of the cones. There are in total N cones (1 ≤ N ≤ 40000). Cone i has radius and height equal to Rii = 1 … N. Each cone is hollow on the inside and has no base, so it can be placed over another cone with smaller radius. No two cones touch.

    The first line of the input contains the integer N. The next N lines each contain three real numbers Rixiyi separated by spaces, where (xiyi) are the coordinates of the center of the base of cone i.

    Output

    The first line of the output le should contain the number of cones that the student should worship. The second line contains the indices of the cones that the student should worship in increasing order. Two consecutive numbers should be separated by a single space.

    Sample Input

    5
    1 0 -2
    3 0 3
    10 0 0
    1 0 1.5
    10 50 50

    Sample Output

    2
    3 5
  • 题解:由于有任意两圆都没有公共点这一条件,要判断一个圆是否在其他圆的内部,只要判断其圆心是否在其他圆内即可。这样判断每个圆是否是最外层的复杂度为O(N),因此很容易得到O(N2)复杂度的算法。而利用平面扫描技术可以得到更为高效的算法。
    在几何问题中,经常利用平面扫描技术来降低算法的复杂度。所谓平面扫描,是指扫描线在平面上按给定轨迹移动的同时,不断根据扫描线扫过部分更新信息,从而得到整体所要求的结果的方法。扫描的方法,既可以从左向右平移与y轴平行的直线,也可以固定射线的端点逆时针转动。
    对于这道题而言,我们在从左向右平移与y轴平行的直线的同时,维护与扫描线相交的最外层的圆的集合。从左向右移动的过程中,只有扫描线移动到圆的左右两端时,圆与扫描线的相交关系才会发生变化,因此我们先将所有这样的x坐标枚举出来并排好序。首先,当扫描线移动到某个圆的左端时,我们需要判断该圆是否包含在其他圆中,为此,我们只需从当前与扫描线相交的最外层的圆中,找到上下两侧y坐标方向距离最近的两个圆,并检查它们就足够了,因为,假设该圆被包含与更远的圆中,却不被包含于最近的圆中,就会得出两个圆相交的结论,而这与题目的条件不符,于是,只要用二叉查找树来维护这些圆,就能够在O(logn)时间内取得待检查的圆了。其次,当扫描线移动到某个圆的右端时,如果该圆已经包含于其他圆中就什么也不做,如果是最外层的圆就将它从二叉树中删去。综上,总的复杂度是O(nlogn)。
  • 代码:
    #include <cstdio>
    #include <utility>
    #include <set>
    #include <vector>
    #include <algorithm> using namespace std; const int MAX_N=;
    int N;
    double x[MAX_N], y[MAX_N], r[MAX_N]; bool inside(int i, int j)
    {
    double dx=x[i]-x[j], dy=y[i]-y[j];
    return dx*dx+dy*dy<=r[j]*r[j];
    } void solve()
    {
    vector<pair<double, int> > events;
    for (int i=; i<N; i++)
    {
    events.push_back(make_pair(x[i]-r[i], i));
    events.push_back(make_pair(x[i]+r[i], i+N));
    }
    sort(events.begin(), events.end());
    set<pair<double, int> > outers;
    vector<int> res;
    for (int i=; i<events.size(); i++)
    {
    int id=events[i].second % N;
    if (events[i].second<N)
    {
    set<pair<double, int> >::iterator it=outers.lower_bound(make_pair(y[id], id));
    if (it !=outers.end() && inside(id, it->second)) continue;
    if (it !=outers.begin() && inside(id, (--it)->second)) continue;
    res.push_back(id);
    outers.insert(make_pair(y[id], id));
    }
    else
    {
    outers.erase(make_pair(y[id], id));
    }
    }
    sort(res.begin(), res.end());
    printf("%d\n", res.size());
    for (int i=; i<res.size(); i++)
    {
    printf("%d%c", res[i]+, i+==res.size() ? '\n' : ' ');
    }
    } int main()
    {
    scanf("%d", &N);
    for (int i=; i<N; i++)
    {
    scanf("%lf%lf%lf", &r[i], &x[i], &y[i]);
    }
    solve();
    }

Coneology(POJ 2932)的更多相关文章

  1. POJ 2932 圆扫描线

    求n个圆中没有被包含的圆.模仿扫描线从左往右扫,到左边界此时如有3个交点,则有3种情况,以此判定该圆是否被离它最近的圆包含,而交点和最近的圆可以用以y高度排序的Set来维护.因此每次到左边界插入该圆, ...

  2. POJ 2932 Coneology(扫描线)

    [题目链接] http://poj.org/problem?id=2932 [题目大意] 给出N个两两没有公共点的圆,求所有不包含于其它圆内部的圆 [题解] 我们计算出所有点在圆心所有y位置的x值, ...

  3. poj 2932 Coneology(扫描线+set)

    Coneology Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3574   Accepted: 680 Descript ...

  4. POJ 2932 Coneology计算最外层圆个数

    平面上有n个两两没有公共点的圆,i号圆的圆心在(xi,yi),半径为ri,编号从1开始.求所有最外层的,即不包含于其他圆内部的圆.输出符合要求的圆的个数和编号.n<=40000. (注意此题无相 ...

  5. poj 2932 Coneology (扫描线)

    题意 平面上有N个两两不相交的圆,求全部最外层的,即不被其它圆包括的圆的个数并输出 思路 挑战程序竞赛P259页 代码 /* ************************************* ...

  6. TTTTTTTTTTTTTTT poj 2932 Coneology 平面扫描+STL

    题目链接 题意:有n个圆,圆之间不存在相交关系,求有几个不被其他任何圆包含的圆,并输出圆的编号: #include <iostream> #include <cstdio> # ...

  7. POJ 2932 平面扫描 /// 判断圆的包含关系

    题目大意: 平面上有n个两两不相交的圆,给定圆的圆心(x,y)和半径 r 求所有最外层的 即 不包含于其他圆内部的圆 挑战258页 平面扫描 记录所有圆的左端和右端 排序后 逐一扫描 将到当前圆为止的 ...

  8. [扫描线]POJ2932 Coneology

    题意:有n个圆 依次给了半径和圆心坐标  保证输入的圆不相交(只有 相离 和 内含/外含 的情况)   问 有几个圆 不内含在其他圆中,并分别列出这几个圆的编号(1~n) (n的范围是[1, 4000 ...

  9. HDU 3511 圆扫描线

    找最深的圆,输出层数 类似POJ 2932的做法 圆扫描线即可.这里要记录各个圆的层数,所以多加一个维护编号的就行了. /** @Date : 2017-10-18 18:16:52 * @FileN ...

随机推荐

  1. Golang | 既是接口又是类型,interface是什么神仙用法?

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是golang专题的第12篇文章,我们来继续聊聊interface的使用. 在上一篇文章当中我们介绍了面向对象的一些基本概念,以及gol ...

  2. three.js 制作机房(下)

    这一篇书接上文,说一说剩下的一些模块. 1. 机箱存储占用比率 机箱存储占用比其实很简单,就是在机箱上新加一个组即可,然后根据比率值来设置颜色,这个颜色我们去HSL(0.4,0.8,0.5) ~ HS ...

  3. Solon Ioc 的注解对比Spring及JSR330

    注解对比 Solon 1.0.10 Spring JSR 330 @XInject * @Autowired @Inject 字段或参数注入 @XBean * @Component @Named Be ...

  4. MyKTV系统项目的感想

    不粉身碎骨,何以脱胎换骨! 3月11号,我们迎来S1的尾巴.这期间有温暖,默契,有项目.一切刚刚好.刚刚正式接到KTV这个微微型的项目的时候,还是很害怕的,虽然老师在前两天就已经提到也讲到,KTV系统 ...

  5. GaussDB连接与登出

    连接 连接命令1: gsql -d ${dbName} -U ${userName} -p {port:默认为25308} -h {ip} -W {password} 连接命令2: gsql -d p ...

  6. 几种定时任务(Timer、TimerTask、ScheduledFuture)的退出—结合真实案例【JAVA】

    工作中常常会有定时任务的开发需求,特别是移动端.最近笔者正好有所涉及,鉴于此,结合开发中的案例说明一下几种定时任务的退出. 需求说明:定时更新正在生成的文件大小和状态[进行中.失败.完成],如果文件生 ...

  7. vue 父子之间传值

    1:父组件 子组件 子组件利用 props 接收父级传过来的数值.子组件选中的数值返回父亲当中利用 钩子函数 $emit('函数名',传过去的数值)  

  8. JavaScript学习系列博客_21_JavaScript 变量、函数的提前声明

    变量的提前声明(全局作用域) - 我们知道js的代码是自上而下执行的.如下,console.log(a)在var a=10前面,但是结果输出的是undefined. - 使用var关键字声明的变量,会 ...

  9. Linux内核之 内存管理

    前面几篇介绍了进程的一些知识,从这篇开始介绍内存.文件.IO等知识,发现更不好写哈哈.但还是有必要记录下自己的所学所思.供后续翻阅,同时写作也是一个巩固的过程. 这些知识以前有文档涉及过,但是角度不同 ...

  10. maatwebsite lost precision when export long integer data

    Maatwebsite would lost precision when export long integer data, no matter string or int storaged in ...