【深入理解Linux内核架构】3.3 页表
页表:用于建立用户进程空间的虚拟地址空间和系统物理内存(内存、页帧)之间的关联。
向每个进程提供一致的虚拟地址空间。
将虚拟内存页映射到物理内存,因而支持共享内存的实现。
可以在不增加物理内存的情况下,将页换出到块设备来增加有效的可用内存空间。
内核内存管理总是假定使用四级页表。
3.3.1 数据结构
内核源代码假定void *和unsigned long long类型所需的比特位数相同,因此他们可以进行强制转换而不损失信息。即:假定sizeof(void *) == sizeof(unsigned long long),在Linux支持的所有体系结构上都是正确的。
1. 内存地址的分解
根据四级页表的结构需求,虚拟地址分为5部分。
各个体系结构不仅地址长度不一致,而且地址字拆分的方式也不同。因此内核定义了宏,用于将地址分解为各个分量。
BITS_PER_LONG定义用于unsigned long变量的比特位数目,因而也适用于指向虚拟地址空间的通用指针。
关于上述设计的宏例如PAGE_SHIFT的定义,是在文件page.h中定义的。在linux下,page.h的定义有2个地方,一个是linux-3.08/include/asm-generic/page.h,一个是在架构相关的目录,如mips是在linux-3.08/arch/mips/include/asm/page.h。一般而言,如果架构目录定义那么肯定会使用架构目录下的定义。
所以我们看看 linux-3.08/arch/mips/include/asm/page.h文件:
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994 - 1999, 2000, 03 Ralf Baechle
* Copyright (C) 1999, 2000 Silicon Graphics, Inc.
*/
#ifndef _ASM_PAGE_H
#define _ASM_PAGE_H #include <spaces.h>
#include <linux/const.h> /*
* PAGE_SHIFT determines the page size
*/
#ifdef CONFIG_PAGE_SIZE_4KB
#define PAGE_SHIFT 12
#endif
#ifdef CONFIG_PAGE_SIZE_8KB
#define PAGE_SHIFT 13
#endif
#ifdef CONFIG_PAGE_SIZE_16KB
#define PAGE_SHIFT 14
#endif
#ifdef CONFIG_PAGE_SIZE_32KB
#define PAGE_SHIFT 15
#endif
#ifdef CONFIG_PAGE_SIZE_64KB
#define PAGE_SHIFT 16
#endif
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK (~((1 << PAGE_SHIFT) - 1)) #ifdef CONFIG_HUGETLB_PAGE
#define HPAGE_SHIFT (PAGE_SHIFT + PAGE_SHIFT - 3)
#define HPAGE_SIZE (_AC(1,UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
#endif /* CONFIG_HUGETLB_PAGE */ #ifndef __ASSEMBLY__ #include <linux/pfn.h>
#include <asm/io.h> extern void build_clear_page(void);
extern void build_copy_page(void); /*
* It's normally defined only for FLATMEM config but it's
* used in our early mem init code for all memory models.
* So always define it.
*/
#define ARCH_PFN_OFFSET PFN_UP(PHYS_OFFSET) extern void clear_page(void * page);
extern void copy_page(void * to, void * from); extern unsigned long shm_align_mask; static inline unsigned long pages_do_alias(unsigned long addr1,
unsigned long addr2)
{
return (addr1 ^ addr2) & shm_align_mask;
} struct page; static inline void clear_user_page(void *addr, unsigned long vaddr,
struct page *page)
{
extern void (*flush_data_cache_page)(unsigned long addr); clear_page(addr);
if (cpu_has_vtag_dcache || (cpu_has_dc_aliases &&
pages_do_alias((unsigned long) addr, vaddr & PAGE_MASK)))
flush_data_cache_page((unsigned long)addr);
} extern void copy_user_page(void *vto, void *vfrom, unsigned long vaddr,
struct page *to);
struct vm_area_struct;
extern void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma); #define __HAVE_ARCH_COPY_USER_HIGHPAGE /*
* These are used to make use of C type-checking..
*/
#ifdef CONFIG_64BIT_PHYS_ADDR
#ifdef CONFIG_CPU_MIPS32
typedef struct { unsigned long pte_low, pte_high; } pte_t;
#define pte_val(x) ((x).pte_low | ((unsigned long long)(x).pte_high << 32))
#define __pte(x) ({ pte_t __pte = {(x), ((unsigned long long)(x)) >> 32}; __pte; })
#else
typedef struct { unsigned long long pte; } pte_t;
#define pte_val(x) ((x).pte)
#define __pte(x) ((pte_t) { (x) } )
#endif
#else
typedef struct { unsigned long pte; } pte_t;
#define pte_val(x) ((x).pte)
#define __pte(x) ((pte_t) { (x) } )
#endif
typedef struct page *pgtable_t; /*
* Right now we don't support 4-level pagetables, so all pud-related
* definitions come from <asm-generic/pgtable-nopud.h>.
*/ /*
* Finall the top of the hierarchy, the pgd
*/
typedef struct { unsigned long pgd; } pgd_t;
#define pgd_val(x) ((x).pgd)
#define __pgd(x) ((pgd_t) { (x) } ) /*
* Manipulate page protection bits
*/
typedef struct { unsigned long pgprot; } pgprot_t;
#define pgprot_val(x) ((x).pgprot)
#define __pgprot(x) ((pgprot_t) { (x) } ) /*
* On R4000-style MMUs where a TLB entry is mapping a adjacent even / odd
* pair of pages we only have a single global bit per pair of pages. When
* writing to the TLB make sure we always have the bit set for both pages
* or none. This macro is used to access the `buddy' of the pte we're just
* working on.
*/
#define ptep_buddy(x) ((pte_t *)((unsigned long)(x) ^ sizeof(pte_t))) #endif /* !__ASSEMBLY__ */ /*
* __pa()/__va() should be used only during mem init.
*/
#ifdef CONFIG_64BIT
#define __pa(x) \
({ \
unsigned long __x = (unsigned long)(x); \
__x < CKSEG0 ? XPHYSADDR(__x) : CPHYSADDR(__x); \
})
#else
#define __pa(x) \
((unsigned long)(x) - PAGE_OFFSET + PHYS_OFFSET)
#endif
#define __va(x) ((void *)((unsigned long)(x) + PAGE_OFFSET - PHYS_OFFSET)) /*
* RELOC_HIDE was originally added by 6007b903dfe5f1d13e0c711ac2894bdd4a61b1ad
* (lmo) rsp. 8431fd094d625b94d364fe393076ccef88e6ce18 (kernel.org). The
* discussion can be found in lkml posting
* <a2ebde260608230500o3407b108hc03debb9da6e62c@mail.gmail.com> which is
* archived at http://lists.linuxcoding.com/kernel/2006-q3/msg17360.html
*
* It is unclear if the misscompilations mentioned in
* http://lkml.org/lkml/2010/8/8/138 also affect MIPS so we keep this one
* until GCC 3.x has been retired before we can apply
* https://patchwork.linux-mips.org/patch/1541/
*/ #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) #define pfn_to_kaddr(pfn) __va((pfn) << PAGE_SHIFT) #ifdef CONFIG_FLATMEM #define pfn_valid(pfn) \
({ \
unsigned long __pfn = (pfn); \
/* avoid <linux/bootmem.h> include hell */ \
extern unsigned long min_low_pfn; \
\
__pfn >= min_low_pfn && __pfn < max_mapnr; \
}) #elif defined(CONFIG_SPARSEMEM) /* pfn_valid is defined in linux/mmzone.h */ #elif defined(CONFIG_NEED_MULTIPLE_NODES) #define pfn_valid(pfn) \
({ \
unsigned long __pfn = (pfn); \
int __n = pfn_to_nid(__pfn); \
((__n >= ) ? (__pfn < NODE_DATA(__n)->node_start_pfn + \
NODE_DATA(__n)->node_spanned_pages) \
: ); \
}) #endif #define virt_to_page(kaddr) pfn_to_page(PFN_DOWN(virt_to_phys(kaddr)))
#define virt_addr_valid(kaddr) pfn_valid(PFN_DOWN(virt_to_phys(kaddr))) /*
#define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | VM_EXEC | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
*/
#define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \
VM_MAYREAD | VM_MAYWRITE) #define UNCAC_ADDR(addr) ((addr) - PAGE_OFFSET + UNCAC_BASE + \
PHYS_OFFSET)
#define CAC_ADDR(addr) ((addr) - UNCAC_BASE + PAGE_OFFSET - \
PHYS_OFFSET) #include <asm-generic/memory_model.h>
#include <asm-generic/getorder.h> #endif /* _ASM_PAGE_H */
阅读上述代码可以得到以下事实:
PAGE_SHIFT:最后一级页表项所需比特位的总是。对于32位系统,PAGE_SHIFT==12.
PAGE_SIZE: 一页的大小。对32位系统,PAGE_SIZE == 4096.
xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
( << ) 【PAGE_SIZE】
(( << ) -)
(~(( << ) -))【PAGE_MASK】
对于mips32架构,关于PGDIR_SHIFT的定义:linux-3.08/arch/mips/include/asm/pgtable-32.h
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 2003 Ralf Baechle
* Copyright (C) 1999, 2000, 2001 Silicon Graphics, Inc.
*/
#ifndef _ASM_PGTABLE_32_H
#define _ASM_PGTABLE_32_H #include <asm/addrspace.h>
#include <asm/page.h> #include <linux/linkage.h>
#include <asm/cachectl.h>
#include <asm/fixmap.h> #include <asm-generic/pgtable-nopmd.h> /*
* - add_wired_entry() add a fixed TLB entry, and move wired register
*/
extern void add_wired_entry(unsigned long entrylo0, unsigned long entrylo1,
unsigned long entryhi, unsigned long pagemask); /*
* - add_temporary_entry() add a temporary TLB entry. We use TLB entries
* starting at the top and working down. This is for populating the
* TLB before trap_init() puts the TLB miss handler in place. It
* should be used only for entries matching the actual page tables,
* to prevent inconsistencies.
*/
extern int add_temporary_entry(unsigned long entrylo0, unsigned long entrylo1,
unsigned long entryhi, unsigned long pagemask); /* Basically we have the same two-level (which is the logical three level
* Linux page table layout folded) page tables as the i386. Some day
* when we have proper page coloring support we can have a 1% quicker
* tlb refill handling mechanism, but for now it is a bit slower but
* works even with the cache aliasing problem the R4k and above have.
*/ /* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (2 * PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2)
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1)) /*
* Entries per page directory level: we use two-level, so
* we don't really have any PUD/PMD directory physically.
*/
#define __PGD_ORDER (32 - 3 * PAGE_SHIFT + PGD_T_LOG2 + PTE_T_LOG2)
#define PGD_ORDER (__PGD_ORDER >= 0 ? __PGD_ORDER : 0)
#define PUD_ORDER aieeee_attempt_to_allocate_pud
#define PMD_ORDER 1
#define PTE_ORDER 0 #define PTRS_PER_PGD (USER_PTRS_PER_PGD * 2)
#define PTRS_PER_PTE ((PAGE_SIZE << PTE_ORDER) / sizeof(pte_t)) #define USER_PTRS_PER_PGD (0x80000000UL/PGDIR_SIZE)
#define FIRST_USER_ADDRESS 0 #define VMALLOC_START MAP_BASE #define PKMAP_BASE (0xfe000000UL) #ifdef CONFIG_HIGHMEM
# define VMALLOC_END (PKMAP_BASE-*PAGE_SIZE)
#else
# define VMALLOC_END (FIXADDR_START-*PAGE_SIZE)
#endif #ifdef CONFIG_64BIT_PHYS_ADDR
#define pte_ERROR(e) \
printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
#else
#define pte_ERROR(e) \
printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
#endif
#define pgd_ERROR(e) \
printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) extern void load_pgd(unsigned long pg_dir); extern pte_t invalid_pte_table[PAGE_SIZE/sizeof(pte_t)]; /*
* Empty pgd/pmd entries point to the invalid_pte_table.
*/
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == (unsigned long) invalid_pte_table;
} #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != (unsigned long) invalid_pte_table;
} static inline void pmd_clear(pmd_t *pmdp)
{
pmd_val(*pmdp) = ((unsigned long) invalid_pte_table);
} #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
#define pte_page(x) pfn_to_page(pte_pfn(x))
#define pte_pfn(x) ((unsigned long)((x).pte_high >> 6))
static inline pte_t
pfn_pte(unsigned long pfn, pgprot_t prot)
{
pte_t pte;
pte.pte_high = (pfn << ) | (pgprot_val(prot) & 0x3f);
pte.pte_low = pgprot_val(prot);
return pte;
} #else #define pte_page(x) pfn_to_page(pte_pfn(x)) #ifdef CONFIG_CPU_VR41XX
#define pte_pfn(x) ((unsigned long)((x).pte >> (PAGE_SHIFT + 2)))
#define pfn_pte(pfn, prot) __pte(((pfn) << (PAGE_SHIFT + 2)) | pgprot_val(prot))
#else
#define pte_pfn(x) ((unsigned long)((x).pte >> _PFN_SHIFT))
#define pfn_pte(pfn, prot) __pte(((unsigned long long)(pfn) << _PFN_SHIFT) | pgprot_val(prot))
#endif
#endif /* defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32) */ #define __pgd_offset(address) pgd_index(address)
#define __pud_offset(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
#define __pmd_offset(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) /* to find an entry in a kernel page-table-directory */
#define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) /* to find an entry in a page-table-directory */
#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) /* Find an entry in the third-level page table.. */
#define __pte_offset(address) \
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - ))
#define pte_offset(dir, address) \
((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address))
#define pte_offset_kernel(dir, address) \
((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address)) #define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
#define pte_unmap(pte) ((void)(pte)) #if defined(CONFIG_CPU_R3000) || defined(CONFIG_CPU_TX39XX) /* Swap entries must have VALID bit cleared. */
#define __swp_type(x) (((x).val >> 10) & 0x1f)
#define __swp_offset(x) ((x).val >> 15)
#define __swp_entry(type,offset) \
((swp_entry_t) { ((type) << ) | ((offset) << ) }) /*
* Bits 0, 4, 8, and 9 are taken, split up 28 bits of offset into this range:
*/
#define PTE_FILE_MAX_BITS 28 #define pte_to_pgoff(_pte) ((((_pte).pte >> 1 ) & 0x07) | \
(((_pte).pte >> ) & 0x38) | \
(((_pte).pte >> ) << )) #define pgoff_to_pte(off) ((pte_t) { (((off) & 0x07) << 1 ) | \
(((off) & 0x38) << ) | \
(((off) >> ) << ) | \
_PAGE_FILE }) #else /* Swap entries must have VALID and GLOBAL bits cleared. */
#if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
#define __swp_type(x) (((x).val >> 2) & 0x1f)
#define __swp_offset(x) ((x).val >> 7)
#define __swp_entry(type,offset) \
((swp_entry_t) { ((type) << ) | ((offset) << ) })
#else
#define __swp_type(x) (((x).val >> 8) & 0x1f)
#define __swp_offset(x) ((x).val >> 13)
#define __swp_entry(type,offset) \
((swp_entry_t) { ((type) << ) | ((offset) << ) })
#endif /* defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32) */ #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
/*
* Bits 0 and 1 of pte_high are taken, use the rest for the page offset...
*/
#define PTE_FILE_MAX_BITS 30 #define pte_to_pgoff(_pte) ((_pte).pte_high >> 2)
#define pgoff_to_pte(off) ((pte_t) { _PAGE_FILE, (off) << 2 }) #else
/*
* Bits 0, 4, 6, and 7 are taken, split up 28 bits of offset into this range:
*/
#define PTE_FILE_MAX_BITS 28 #define pte_to_pgoff(_pte) ((((_pte).pte >> 1) & 0x7) | \
(((_pte).pte >> ) & 0x8) | \
(((_pte).pte >> ) << )) #define pgoff_to_pte(off) ((pte_t) { (((off) & 0x7) << 1) | \
(((off) & 0x8) << ) | \
(((off) >> ) << ) | \
_PAGE_FILE })
#endif #endif #if defined(CONFIG_64BIT_PHYS_ADDR) && defined(CONFIG_CPU_MIPS32)
#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).pte_high })
#define __swp_entry_to_pte(x) ((pte_t) { 0, (x).val })
#else
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
#endif #endif /* _ASM_PGTABLE_32_H */
我只关心mips32架构的相关配置,所以,此时,对于四级页表的Linux,如何为mips32设置成3级页表?
Linux提供了通用的没有PUD和PMD的相关的配置。配置文件:linux-3.08/include/asm-generic/pgtable-nopmd.h和pgtable-nopud.h:
/* linux-3.08/include/asm-generic/pgtable-nopmd.h */
#ifndef _PGTABLE_NOPMD_H
#define _PGTABLE_NOPMD_H #ifndef __ASSEMBLY__ #include <asm-generic/pgtable-nopud.h> struct mm_struct; #define __PAGETABLE_PMD_FOLDED /*
* Having the pmd type consist of a pud gets the size right, and allows
* us to conceptually access the pud entry that this pmd is folded into
* without casting.
*/
typedef struct { pud_t pud; } pmd_t; #define PMD_SHIFT PUD_SHIFT
#define PTRS_PER_PMD 1
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1)) /*
* The "pud_xxx()" functions here are trivial for a folded two-level
* setup: the pmd is never bad, and a pmd always exists (as it's folded
* into the pud entry)
*/
static inline int pud_none(pud_t pud) { return ; }
static inline int pud_bad(pud_t pud) { return ; }
static inline int pud_present(pud_t pud) { return ; }
static inline void pud_clear(pud_t *pud) { }
#define pmd_ERROR(pmd) (pud_ERROR((pmd).pud)) #define pud_populate(mm, pmd, pte) do { } while (0) /*
* (pmds are folded into puds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pud(pudptr, pudval) set_pmd((pmd_t *)(pudptr), (pmd_t) { pudval }) static inline pmd_t * pmd_offset(pud_t * pud, unsigned long address)
{
return (pmd_t *)pud;
} #define pmd_val(x) (pud_val((x).pud))
#define __pmd(x) ((pmd_t) { __pud(x) } ) #define pud_page(pud) (pmd_page((pmd_t){ pud }))
#define pud_page_vaddr(pud) (pmd_page_vaddr((pmd_t){ pud })) /*
* allocating and freeing a pmd is trivial: the 1-entry pmd is
* inside the pud, so has no extra memory associated with it.
*/
#define pmd_alloc_one(mm, address) NULL
static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
{
}
#define __pmd_free_tlb(tlb, x, a) do { } while (0) #undef pmd_addr_end
#define pmd_addr_end(addr, end) (end) #endif /* __ASSEMBLY__ */ #endif /* _PGTABLE_NOPMD_H */
/* linux-3.08/include/asm-generic/pgtable-nopud.h */
#ifndef _PGTABLE_NOPUD_H
#define _PGTABLE_NOPUD_H #ifndef __ASSEMBLY__ #define __PAGETABLE_PUD_FOLDED /*
* Having the pud type consist of a pgd gets the size right, and allows
* us to conceptually access the pgd entry that this pud is folded into
* without casting.
*/
typedef struct { pgd_t pgd; } pud_t; #define PUD_SHIFT PGDIR_SHIFT
#define PTRS_PER_PUD 1
#define PUD_SIZE (1UL << PUD_SHIFT)
#define PUD_MASK (~(PUD_SIZE-1)) /*
* The "pgd_xxx()" functions here are trivial for a folded two-level
* setup: the pud is never bad, and a pud always exists (as it's folded
* into the pgd entry)
*/
static inline int pgd_none(pgd_t pgd) { return ; }
static inline int pgd_bad(pgd_t pgd) { return ; }
static inline int pgd_present(pgd_t pgd) { return ; }
static inline void pgd_clear(pgd_t *pgd) { }
#define pud_ERROR(pud) (pgd_ERROR((pud).pgd)) #define pgd_populate(mm, pgd, pud) do { } while (0)
/*
* (puds are folded into pgds so this doesn't get actually called,
* but the define is needed for a generic inline function.)
*/
#define set_pgd(pgdptr, pgdval) set_pud((pud_t *)(pgdptr), (pud_t) { pgdval }) static inline pud_t * pud_offset(pgd_t * pgd, unsigned long address)
{
return (pud_t *)pgd;
} #define pud_val(x) (pgd_val((x).pgd))
#define __pud(x) ((pud_t) { __pgd(x) } ) #define pgd_page(pgd) (pud_page((pud_t){ pgd }))
#define pgd_page_vaddr(pgd) (pud_page_vaddr((pud_t){ pgd })) /*
* allocating and freeing a pud is trivial: the 1-entry pud is
* inside the pgd, so has no extra memory associated with it.
*/
#define pud_alloc_one(mm, address) NULL
#define pud_free(mm, x) do { } while (0)
#define __pud_free_tlb(tlb, x, a) do { } while (0) #undef pud_addr_end
#define pud_addr_end(addr, end) (end) #endif /* __ASSEMBLY__ */
#endif /* _PGTABLE_NOPUD_H */
尽管:PMD_SHIFT和PUD_SHIFT都定义为PGDIR_SHIFT。但是关键字:PDRS_PER_PUD和PTRS_PER_PMD都定义为1。那么意义是什么呢?
PDRS_PER_PUD:指定了二级页表(PUD)所能存储的指针数目。
PDRS_PED_PMD:指定了三级页表(PMD)所能存储的指针数目。
设置为1,Linux内核还是以为是四级页表,但是实际上只有二级页表。
在PAGE_SHIFT代码中,我们看到了PAGE_MASK。类似存在:PUD_MASK、PMD_MASK、PGDIR_MASK。
那么这些MASK的作用是:从给定地址中提取各个分量。【用给定地址与对应的MASK位与即可获得各个分量】
2. 页表的格式
pgd_t:全局页目录项。
pud_t:上层页目录项。
pmd_t:中间页目录项。
pte_t:直接页表项。
typedef struct { unsigned long pgd; } pgd_t;
typedef struct { pgd_t pgd; } pud_t;
typedef struct { pgd_t pud; } pmd_t;
typedef struct { unsigned long pte; } pte_t;
PAGE_ALIGN:将输入的地址对其到下一页的起始处。如页大小是4096,该宏总返回其倍数。PAGE_ALIGN(6000) = 8192.
3. 特定于PTE的信息
最后一级页表中的项不仅包含了只想页的内存位置的指针,还在上述的多余的比特位包含了与页有关的附加信息。这些信息特定于CPU,提供了页的访问控制信息。
详细内容不再细述。用到时我们再回头来看。
【深入理解Linux内核架构】3.3 页表的更多相关文章
- 【深入理解Linux内核架构】第3章:内存管理
3.1 概述 内存管理涵盖了许多领域: 内存中物理内存页的管理: 分配大块内存的伙伴系统: 分配小块内存的slab.slub.slob分配器: 分配非连续内存块的vmalloc机制: 进程的地址空间. ...
- 【深入理解Linux内核架构】6.6 资源分配
一段摘自<Linux设备驱动程序>的话: 每种外设都通过读写寄存器进行控制.大部分外设都有多个寄存器,不管是内存地址空间还是I/O地址空间,这些寄存器的访问地址都是连续的. 在硬件层,内存 ...
- 【深入理解Linux内核架构】3.2 (N)UMA模型中的内存组织
内核对一致和非一致内存访问系统使用相同的数据结构.在UMA系统上,只使用一个NUMA结点来管理整个系统内存.而内存管理的其他部分则相信他们是在处理一个伪NUMA系统. 3.2.1 概述 内存划分为结点 ...
- 《深入理解linux内核架构》第二章 进程管理和调度
2.1进程优先级 进程优先级 硬实时进程 软实时进程 抢占式多任务处理 2.2进程生命周期 用户太切换到核心态的办法 系统调用 中断 抢占调度模型优先级普通进程<系统调用<中断 普通进程可 ...
- 【读书笔记::深入理解linux内核】内存寻址【转】
转自:http://www.cnblogs.com/likeyiyy/p/3837272.html 我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0 ...
- 【读书笔记::深入理解linux内核】内存寻址
我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开 ...
- 读书笔记之Linux系统编程与深入理解Linux内核
前言 本人再看深入理解Linux内核的时候发现比较难懂,看了Linux系统编程一说后,觉得Linux系统编程还是简单易懂些,并且两本书都是讲Linux比较底层的东西,只不过侧重点不同,本文就以Linu ...
- 搭建《深入Linux内核架构》的Linux环境
作者 彭东林 pengdonglin137@163.com 软件 Host: Ubuntu14.04 64 Qemu 2.8.0 Linux 2.6.24 busybox 1.24.2 gcc 4.4 ...
- 深入Linux内核架构——简介与概述
一.内核的任务 纯技术层面上,内核是硬件与软件的之间的一个中间层.作用是将应用程序的请求传递给硬件,并充当底层驱动程序,对系统中的各种设备和组件进行寻址. 从应用程序视角上看,内核可以被认为是一台增强 ...
随机推荐
- hdfs学习(三)
HDFS 的 API 操作 使用url方式访问数据(了解) @Test public void urlHdfs() throws IOException { //1.注册url URL.setURLS ...
- int ,long , long long , __int64类型的范围
首先见测试代码(在g++/gcc下运行): #include<iostream> using namespace std; int main() { cout<<sizeof( ...
- UML活动图(Activity Diagram)
目录: 1.什么是活动图 2.活动图的构成 (1)起点 (2)重点 (3)活动名称 (4)判断条件 (5)同步条 (6)接收信号 (7)发送信号 (8)泳道 (9)转移 3.活动图实例--订单处理 4 ...
- Java mysql数据库连接Demo1
public class MysqlUtil { /** * 链接数据库 */ /** * 方法一: * 加载驱动的方法不止一种,但这种最常用 */ public static Connection ...
- 按钮改变和控制div的形状的html,JavaScript代码
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- Java——注解
注解的产生背景以前,xml以低耦合的方式得到了广大开发者的青睐,xml在当时基本上能完成框架中的所有配置.但是随着项目越来越庞大,xml的配置也越来越复杂,维护性也随之降低,维护成本增高.于是就产生了 ...
- Apache Pulsar 社区周报:08-08 ~ 08-14
关于 Apache Pulsar Apache Pulsar 是 Apache 软件基金会顶级项目,是下一代云原生分布式消息流平台,集消息.存储.轻量化函数式计算为一体,采用计算与存储分离架构设计,支 ...
- 【JDK】Linux安装源码包JDK完整步骤
[JDK]Linux安装源码包JDK完整步骤 1.检查一下系统中的jdk版本 [root@localhost software]# java -version 显示: openjdk version ...
- android studio配置so和assets目录
so配置: 1. 建立src/main/libs/armeabi目录,so文件放入armeabi目录 2.配置build.gradle android { defaultConfig{ XXXXXX ...
- Apollo(阿波罗)配置中心Java客户端使用指南使用指南
Apollo(阿波罗)是携程框架部门研发的分布式配置中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性,适用于微服务配置管 ...