1. 高斯牛顿法

残差函数f(x)为非线性函数,对其一阶泰勒近似有:



这里的J是残差函数f的雅可比矩阵,带入损失函数的:



令其一阶导等于0,得:



这就是论文里常看到的normal equation。

2.LM

LM是对高斯牛顿法进行了改进,在求解过程中引入了阻尼因子:

2.1 阻尼因子的作用:

2.2 阻尼因子的初始值选取:

一个简单的策略就是:

2.3 阻尼因子的更新策略





3.核心代码讲解

3.1 构建H矩阵

void Problem::MakeHessian() {
TicToc t_h;
// 直接构造大的 H 矩阵
ulong size = ordering_generic_;
MatXX H(MatXX::Zero(size, size));
VecX b(VecX::Zero(size)); // TODO:: accelate, accelate, accelate
//#ifdef USE_OPENMP
//#pragma omp parallel for
//#endif // 遍历每个残差,并计算他们的雅克比,得到最后的 H = J^T * J
for (auto &edge: edges_) { edge.second->ComputeResidual();
edge.second->ComputeJacobians(); auto jacobians = edge.second->Jacobians();
auto verticies = edge.second->Verticies();
assert(jacobians.size() == verticies.size());
for (size_t i = 0; i < verticies.size(); ++i) {
auto v_i = verticies[i];
if (v_i->IsFixed()) continue; // Hessian 里不需要添加它的信息,也就是它的雅克比为 0 auto jacobian_i = jacobians[i];
ulong index_i = v_i->OrderingId();
ulong dim_i = v_i->LocalDimension(); MatXX JtW = jacobian_i.transpose() * edge.second->Information();
for (size_t j = i; j < verticies.size(); ++j) {
auto v_j = verticies[j]; if (v_j->IsFixed()) continue; auto jacobian_j = jacobians[j];
ulong index_j = v_j->OrderingId();
ulong dim_j = v_j->LocalDimension(); assert(v_j->OrderingId() != -1);
MatXX hessian = JtW * jacobian_j;
// 所有的信息矩阵叠加起来
H.block(index_i, index_j, dim_i, dim_j).noalias() += hessian;
if (j != i) {
// 对称的下三角
H.block(index_j, index_i, dim_j, dim_i).noalias() += hessian.transpose();
}
}
b.segment(index_i, dim_i).noalias() -= JtW * edge.second->Residual();
} }
Hessian_ = H;
b_ = b;
t_hessian_cost_ += t_h.toc(); delta_x_ = VecX::Zero(size); // initial delta_x = 0_n; }

3.2 将构建好的H矩阵加上阻尼因子

void Problem::AddLambdatoHessianLM() {
ulong size = Hessian_.cols();
assert(Hessian_.rows() == Hessian_.cols() && "Hessian is not square");
for (ulong i = 0; i < size; ++i) {
Hessian_(i, i) += currentLambda_;
}
}

3.3 进行求解后,验证该步的解是否合适,代码对应阻尼因子的更新策略

bool Problem::IsGoodStepInLM() {
double scale = 0;
scale = delta_x_.transpose() * (currentLambda_ * delta_x_ + b_);
scale += 1e-3; // make sure it's non-zero :) // recompute residuals after update state
// 统计所有的残差
double tempChi = 0.0;
for (auto edge: edges_) {
edge.second->ComputeResidual();
tempChi += edge.second->Chi2();
} double rho = (currentChi_ - tempChi) / scale;
if (rho > 0 && isfinite(tempChi)) // last step was good, 误差在下降
{
double alpha = 1. - pow((2 * rho - 1), 3);
alpha = std::min(alpha, 2. / 3.);
double scaleFactor = (std::max)(1. / 3., alpha);
currentLambda_ *= scaleFactor;
ni_ = 2;
currentChi_ = tempChi;
return true;
} else {
currentLambda_ *= ni_;
ni_ *= 2;
return false;
}
}

LM算法详解的更多相关文章

  1. BM算法  Boyer-Moore高质量实现代码详解与算法详解

    Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:h ...

  2. kmp算法详解

    转自:http://blog.csdn.net/ddupd/article/details/19899263 KMP算法详解 KMP算法简介: KMP算法是一种高效的字符串匹配算法,关于字符串匹配最简 ...

  3. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  4. [转] KMP算法详解

    转载自:http://www.matrix67.com/blog/archives/115 KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段.    我们这里说的K ...

  5. 【转】AC算法详解

    原文转自:http://blog.csdn.net/joylnwang/article/details/6793192 AC算法是Alfred V.Aho(<编译原理>(龙书)的作者),和 ...

  6. KMP算法详解(转自中学生OI写的。。ORZ!)

    KMP算法详解 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第六个自然段. 我们这里说的KMP不是拿来放电影的(虽然我很喜欢这个软件),而是一种算法.KMP算法是拿来处理字符串匹配的.换句 ...

  7. EM算法详解

    EM算法详解 1 极大似然估计 假设有如图1的X所示的抽取的n个学生某门课程的成绩,又知学生的成绩符合高斯分布f(x|μ,σ2),求学生的成绩最符合哪种高斯分布,即μ和σ2最优值是什么? 图1 学生成 ...

  8. Tarjan算法详解

    Tarjan算法详解 今天偶然发现了这个算法,看了好久,终于明白了一些表层的知识....在这里和大家分享一下... Tarjan算法是一个求解极大强联通子图的算法,相信这些东西大家都在网络上百度过了, ...

  9. 安全体系(二)——RSA算法详解

    本文主要讲述RSA算法使用的基本数学知识.秘钥的计算过程以及加密和解密的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 1.概述 ...

  10. 安全体系(三)——SHA1算法详解

    本文主要讲述使用SHA1算法计算信息摘要的过程. 安全体系(零)—— 加解密算法.消息摘要.消息认证技术.数字签名与公钥证书 安全体系(一)—— DES算法详解 安全体系(二)——RSA算法详解 为保 ...

随机推荐

  1. 【云原生 · DevOps】DevOps 解决方案

    DevOps 解决方案 1.1 容器化 CI/CD 1.2 容器化流水线 1.3 深度集成 Jenkins 1.4 灰度发布 1.5 制品库设计 1.6 DevOps 安全 1.6.1 CI/CD 安 ...

  2. .NET周报【11月第3期 2022-11-22】

    国内文章 .NET Conf China 2022 第一批讲师阵容大揭秘!整个期待了! https://mp.weixin.qq.com/s/4p89hhBPw6qv-0OB_T_TOg 目光看过来 ...

  3. 解决win7设置默认程序打开方式失效

    问题描述 我在设置一个文件(.ui)的默认程序打开,总是失效.设置不成功. 原因 正常这个程序应该用 designer.exe 打开,但是我之前设置过(.ui)默认程序打开程序为designer.ex ...

  4. 【消息队列面试】11-14:kafka高可靠、高吞吐量、消息丢失、消费模式

    十一.kafka消息高可靠的解决方案 1.高可靠=避免消息丢失 解决消息丢失的问题 2.如何解决 (1)保证消息发送是可靠的(发成功了/落到partition) a.ack参数 发送端,采用ack机制 ...

  5. python3中的常见知识点1

    python3中的常见知识点1 简记一些python小知识 字符串输出 docstring(文档字符串) Lambda 函数(匿名函数) python函数之参数调用 参考链接 字符串输出 1.r'原始 ...

  6. day33-JSON&Ajax01

    JSON&Ajax01 JSON 在线文档 AJAX 在线文档 1.JSON介绍 JSON指的是JavaScript对象表示法( JavaScript Object Notation),JSO ...

  7. 快速入门JavaScript编程语言

    目录 JS简介 JS基础 1.注释语法 2.引入js的多种方式 3.结束符号 变量与常量 let和var的区别 申明常量 const 严格模式 use strict 基本数据类型 1.数值类型(Num ...

  8. java中对象存在形式

    本文主要讲述jvm中对象的存储形式: class Cat{ String name; int age; String color; // 行为 } 依据Cat类创建对象 public class Ob ...

  9. python 实现RSA数字签名

    from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_v1_5 as Cipher_pkcs1_v1_5 from Cryp ...

  10. uniapp 微信小程序 引入 环信聊天

    最近项目需要实现一个聊天的功能,群聊或者单聊,用到环信,根据官网实现一下相关的配置吧 第一:下载环信demo  地址:https://github.com/easemob/webim-uniapp-d ...