题面

题解

把题意变换一下,从(0,0)走到(n,m),每次只能网右或往上走,所以假设最大前缀和为f(n),那么走的时候就要到达但不超过 y = x-f(n) 这条线,

我们可以枚举答案,然后乘上方案数。

根据卡塔兰数的通项公式公式的推导过程, 可以得出方案数的解法,

对于这道题的图中,求碰到过红线的方案数则是把第一次碰到红线后的步骤都沿红线轴对称折叠过去,那么就唯一对应一个从(0,0)走到(m+f(n),n-f(n))的方案,方案数就为C(n+m,n-f(n)) (这里是组合数)

我们再容斥一小下,刚好只走到y=x-f(n)的方案数等于碰到过y=x-f(n)的方案数减去碰到过y=x-f(n)-1的方案数,为C(n+m,n-f(n)) - C(n+m,n-f(n)-1),

CODE

#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#include<queue>
#include<stack>
#include<map>
#include<vector>
#include<algorithm>
#define MAXN 2005
#define MAXM 35
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x)&(x))
//#define int LL
using namespace std;
inline LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s == '-')f = -1;s = getchar();}
while(s >= '0' && s <= '9') {x = x * 10 + (s - '0');s = getchar();}
return x * f;
}
const int jzm = 998244853;
int n,m,i,j,s,o,k;
int C[MAXN<<1][MAXN<<1];
int main() {
C[0][0] = 1;
for(int i = 1;i <= 4000;i ++) {
C[i][0] = 1;
for(int j = 1;j <= i;j ++) {
C[i][j] = (C[i-1][j] +0ll+ C[i-1][j-1]) % jzm;
}
}
n = read();m = read();
int ans = 0,pre = 0,no = 0;
for(int i = n;i >= max(1,n-m);i --) {
no = C[n+m][n-i];
ans = (ans +0ll+ (no +0ll+ jzm - pre) % jzm *1ll* i % jzm) % jzm;
pre = no;
}
printf("%d\n",ans);
return 0;
}

CF1204E Natasha, Sasha and the Prefix Sums (卡塔兰数推理)的更多相关文章

  1. [CF1204E]Natasha,Sasha and the Prefix Sums 题解

    前言 本文中的排列指由n个1, m个-1构成的序列中的一种. 题目这么长不吐槽了,但是这确实是一道好题. 题解 DP题话不多说,直接状态/变量/转移. 状态 我们定义f表示"最大prefix ...

  2. CF1204E Natasha, Sasha and the Prefix Sums(组合数学)

    做法一 \(O(nm)\) 考虑\(f(i,j)\)为i个+1,j个-1的贡献 \(f(i-1,j)\)考虑往序列首添加一个\(1\),则贡献\(1\times\)为序列的个数:\(C(j+i-1,i ...

  3. CodeForces 1204E"Natasha, Sasha and the Prefix Sums"(动态规划 or 组合数学--卡特兰数的应用)

    传送门 •参考资料 [1]:CF1204E Natasha, Sasha and the Prefix Sums(动态规划+组合数) •题意 由 n 个 1 和 m 个 -1 组成的 $C_{n+m} ...

  4. CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)

    题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...

  5. E. Natasha, Sasha and the Prefix Sums

    http://codeforces.com/contest/1204/problem/E 给定n个 1 m个 -1的全排 求所有排列的$f(a) = max(0,max_{1≤i≤l} \sum_{j ...

  6. Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学

    Codeforces Round #581 (Div. 2)-E. Natasha, Sasha and the Prefix Sums-动态规划+组合数学 [Problem Description] ...

  7. catalan卡塔兰数

    令h(0)=1,h(1)=1,卡塔兰数数满足递归式:h(n)= h(0)*h(n-1) + h(1)*h(n-2) + ... + h(n-1)h(0) (其中n>=2),这是n阶递推关系;还可 ...

  8. 卡塔兰数(Catalan)

    卡塔兰数(Catalan) 原理: 令h(0)=1,h(1)=1. 卡塔兰数满足递推式:h(n)=h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0)(n>=2) ...

  9. [HNOI2009]有趣的数列(卡塔兰数,线性筛)

    [HNOI2009]有趣的数列 题目描述 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所有的奇数项满足a1< ...

随机推荐

  1. VTK 在WINDOWS上的安装使用

    参考:http://www.vtk.org/Wiki/VTK/Building/Windows#Step_5_-_Open_the_Visual_Studio_project

  2. NET架构师的基本职责

    NET架构师的基本职责1 职责 对本公司大健康平台提出技术研究及可行性报告; 结合需求设计高扩展性.高性能.安全.稳定.可靠的技术系统; 可以通过配置实现业务需求的变化,跟踪并研究***并应用于产品; ...

  3. tomcat 的安全配置预防后台被攻击

    安全是系统架构中最重要的关注点之一,通常情况下,所说的安全涵盖网络安全.数据安全.操作系统安全.服务器安全以及应用系统安全等诸多方面. Tomcat 是一个免费的开放源代码 的Web应用服务器,技术先 ...

  4. python基础教程:__call__用法

    __call__可以使得方法变成可被调用对象:(PS:python中的方法和普通函数有点区别:方法的第一个参数是类实例) 允许一个类的实例像函数一样被调用.实质上说,这意味着 x() 与 x.call ...

  5. 编程思想转换&体验Lambda的更优写法和Lambda标准格式

    编程思想转换做什么,而不是怎么做 我们真的希望创建一个匿名内部类对象吗?不,我们只是为了做这件事情而不得不创建一个对象. 我们真正希望做的事情是:将run方法体内的代码传递给Thread类知晓. 传递 ...

  6. Harbor-私有镜像仓库的安装部署

    Harbor 安装条件 官网给出了安装需要的最低硬件和软件的条件:https://goharbor.io/docs/2.0.0/install-config/installation-prereqs/ ...

  7. HMS Core图形图像技术展现最新功能和应用场景,加速构建数智生活

    [2022年7月15日,杭州]HUAWEI Developer Day(华为开发者日,简称HDD)杭州站拉开帷幕.在数字经济不断发展的今天,开发者对图形图像的开发需求更加深入和多样化,从虚拟环境重构到 ...

  8. Gorgerous -「歌词」留言板

    歌者,献祭「心声」,以沐浴「新生」. Oh love. How I miss you every single days when I see you on those streets. Oh lov ...

  9. 弹性布局( display: flex;)

    参考: https://www.cnblogs.com/hellocd/p/10443237.html

  10. SQL审核工具自荐Owls

    关键词: sql审批.sql检测.sql执行.备份 概要 这里主要是向大家推荐一款sql检测.审批工具Owls,用于自动检测.审批sql的执行,还有其他的审批.备份.查询等功能.以提高sql的规范化, ...