[USACO2021DEC] HILO

Solution

参考自 官方题解 里提到的一篇 Obliteration.pdf,但是里面作者写出了极多错误。。。然后式子还错错得对了。

令 \(y=n-x\)。

我们考虑枚举每一对数的贡献,不妨设为 \(j,i\ (j\in [x+1,n],i\in [1,x])\):

\[\pi =\underbrace{\cdots}_{X} \ j\ \underbrace{\cdots}_{Y} \ i \underbrace{\cdots}_{Z}
\]
  • 对于 \(k\in [1,i)\),它们若位于 \(X,Z\) 则没有限制,位于 \(Y\) 则得满足它不是 "LO";

  • 对于 \(k\in [i+1,x]\),它们只能位于 \(Z\);

  • 对于 \(k\in [x+1,j)\),它们只能位于 \(Z\);

  • 对于 \(k\in [j+1,n]\),它们没有任何限制。

我们枚举第一类位于 \(X,Y\) 的个数 \(m\),限制是位于 \(X\) 中的 \(\max\) 大于 \(Y\) 中的 \(\max\),显然两者是对称的,所以方案数为 \(\binom{i-1}{m} \cdot \frac{(m+1)!+[m=0]}{2}\)。

接下来推式子:

\[\begin{aligned}ans&=\sum_{i\le x}\sum_{j\le y} n^{\underline{y-j}} \sum_{m}\binom{i-1}{m} \cdot \frac{(m+1)!+[m=0]}{2}\cdot (n-(y-j+1)-m-1)!\\&=\sum_{j\le y} n^{\underline{j-1}}\sum_{i\le x}\sum_{m}\binom{i-1}{m}\cdot \frac{(m+1)!+[m=0]}{2}\cdot (n-j-m-1)!\\&=\sum_{j\le y} n^{\underline{j-1}}\sum_{m}\binom{x}{m+1}\cdot \frac{(m+1)!+[m=0]}{2}\cdot (n-j-m-1)!\\&=\sum_{j\le y}\frac{n^{\underline{j-1}}}{2}\left(x(n-j-1)!+\sum_{m\ge 1}\frac{x!}{(x-m)!}(n-j-m)!\right)\\&=\sum_{j\le y}\frac{n^{\underline{j-1}}}{2}\left(x(n-j-1)!+x!(y-j)!\sum_{m\ge 1}\binom{n-j-m}{y-j}\right)\\&=\sum_{j\le y}\frac{n^{\underline{j-1}}}{2}\left(x(n-j-1)!+x!(y-j)!\binom{n-j}{y-j+1}\right)\\&=\sum_{j\le y}\frac{n^{\underline{j-1}}}{2}\left(x(n-j-1)!+\frac{x(n-j)!}{y-j+1}\right)\\&=\frac{n!}{2}\sum_{j\le y}\left(\frac{x}{(n-j)(n-j+1)}+\frac{x}{(n-j+1)(y-j+1)}\right)\\&=\frac{n!}{2}\sum_{j\le y}\left(\frac{x}{n-j}-\frac{x}{n-j+1}+\frac{1}{y-j+1}-\frac{1}{n-j+1}\right)\\&=\frac{n!}{2}\left(1-\frac{x}{n}+H_y-(H_n-H_{n-y})\right)\\&=\frac{n!}{2}\left(H_x+H_y-H_n+\frac{y}{n}\right)\end{aligned}
\]

其中 \(H_n\) 是调和级数前缀和。

于是我们得到了可以对 \(x=0\sim n\) 均 \(\mathcal O(1)\) 求解的线性做法。

时间复杂度 \(\mathcal O(n)\)。

[USACO2021DEC] HILO 踩标做法的更多相关文章

  1. 【NFLSPC#4】嘉然今天吃什么(踩标做法)

    [NFLSPC#4]嘉然今天吃什么 感谢 @zhoukangyang 神仙的帮助. Solution 令 \(s_i\) 表示选了 \(i\) 个灯后仍然不合法的概率,那么 \(E(x)=\sum_{ ...

  2. 「ARC 139F」Many Xor Optimization Problems【线性做法,踩标】

    「ARC 139F」Many Xor Optimization Problems 对于一个长为 \(n\) 的序列 \(a\),我们记 \(f(a)\) 表示从 \(a\) 中选取若干数,可以得到的最 ...

  3. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  4. ZJOI2019一轮停课刷题记录

    Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...

  5. SCOI 2018 划水记

    (此处不应有目录,省选爆零的过程得慢慢看) Day -n 一诊 说真的,在没看到“第一次诊断性考试”之前,一直以为是“一整”,真是可怕,初中教育都开始像UW中的最高祭司学习了. 感觉题目很gg.于是考 ...

  6. LOJ3048 「十二省联考 2019」异或粽子

    题意 题目描述 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子. 小粽面前有 $n$ 种互不相同的粽子馅儿,小粽将它们摆放为了一排,并从左至右编号为 $1$ 到 $n$.第 $i$ 种馅儿具 ...

  7. NOIP练习赛题目4

    肥得更高 难度级别:C: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 自2009年以来,A.B站的历史就已经步入了农业变革的黎明期.在两站的 ...

  8. 【数学】【P5150】 生日礼物

    Description 给定 \(n\),求 \[\sum_{i}~\sum_j~[lcm(i,j)~=~n]\] input 一行一个整数代表 \(n\) Output 一行一个整数代表答案 Hin ...

  9. Wolfycz的娱乐赛题解

    现在不会放题解的!比赛完了我会把题解放上来的 祝大家玩的愉快~ 等会,cnblogs不会显示更新时间?我禁赛我自己 UPD:2018.12.15 欢迎大家爆踩标程- painting 我们考虑转化题意 ...

随机推荐

  1. Java/C++实现代理模式---婚介所

    婚介所其实就是找对象的一个代理,请仿照我们的课堂例子"论坛权限控制代理"完成这个实际问题,其中如果年纪小于18周岁,婚介所会提示"对不起,不能早恋!",并终止业 ...

  2. oracle 多列求和

    第一种: select sum(decode(count1,null,0,count1) +decode(count2,null,0,count2) +decode(count3,null,0,cou ...

  3. C语言之:结构体动态分配内存(利用结构体数组保存不超过10个学生的信息,每个学生的信息包括:学号、姓名和三门课(高数、物理和英语 )的成绩和平均分(整型)。)

    题目内容: 利用结构体数组保存不超过10个学生的信息,每个学生的信息包括:学号.姓名和三门课(高数.物理和英语 )的成绩和平均分(整型). 编写程序,从键盘输入学生的人数,然后依次输入每个学生的学号. ...

  4. 如何使用Android可视化埋点

    Android可视化埋点是Android全埋点的增强.开发者可以将App界面同步至DTM界面,并在DTM界面通过可视化点击的方式添加埋点事件.目前Android可视化埋点包含两种埋点方式:普通可视化埋 ...

  5. 帝国cms插件 一键替换数据表中已发表文章的内容关键字

    你是不是也在优化网站,是不是网站发展了一段时间之后才来做优化的,这样当然就会导致已经发表文章里的内容关键字,不能得到替换了! 小编根据后台替换内容关键字的程序,重写了一段 通过运行单个页面就能直接替换 ...

  6. 两个线程交替运行——使用synchronized+wait+notify实现

    public class ExecuteThread { private static Object obj = new Object(); private static boolean flag; ...

  7. IDEA Debug过程中使用Drop Frame或Reset Frame实现操作回退

    大家在Debug程序的时候,是否遇到过因为"下一步"按太快,而导致跳过了想要深入分析的那段代码?是不是很想要有"回到上一步"这样的操作呢? 在IDEA中就提供了 ...

  8. 基于pgrouting的路径规划处理

    对于GIS业务来说,路径规划是非常基础的一个业务,一般公司如果处理,都会直接选择调用已经成熟的第三方的接口,比如高德.百度等.当然其实路径规划的算法非常多,像比较著名的Dijkstra.A*算法等.当 ...

  9. netty系列之:netty中的核心MessageToByte编码器

    目录 简介 MessageToByte框架简介 MessageToByteEncoder ByteToMessageDecoder ByteToMessageCodec 总结 简介 之前的文章中,我们 ...

  10. 手把手带你入门ECharts

    1.什么是ECharts ECharts,缩写来自Enterprise Charts,商业级数据图表,是来自百度商业前端数据可视化团队EFE的一个开源的纯Javascript的图表库,可以流畅的运行在 ...