数组越界那个RE+WA的姹紫嫣红的。。。

乘法原理求种类数,类似于没有上司的舞会。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long #define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 100007;
const int mod = 1000000007; struct Edge{
int nxt, pre;
}e[N << 1];
int head[N], cntEdge;
inline void add(int u, int v){
e[++cntEdge] = (Edge){head[u], v}, head[u] = cntEdge;
} int col[N];
long long f[N][3];
inline void DFS(int u, int fa){
if(col[u])
f[u][col[u] - 1] = 1;
else{
R(i,0,2)
f[u][i] = 1;
}
for(register int i = head[u]; i; i = e[i].nxt){
int v = e[i].pre;
if(v == fa) continue;
DFS(v, u);
f[u][0] = f[u][0] * (f[v][1] + f[v][2]) % mod;
f[u][1] = f[u][1] * (f[v][0] + f[v][2]) % mod;
f[u][2] = f[u][2] * (f[v][0] + f[v][1]) % mod;
} } int main(){
//FileOpen(); int n, K;
io >> n >> K;
R(i,2,n){
int u, v;
io >> u >> v;
add(u, v);
add(v, u);
} R(i,1,K){
int x, nodeColor;
io >> x >> nodeColor;
col[x] = nodeColor;
} DFS(1, 0); printf("%lld", ((f[1][0] + f[1][1] + f[1][2]) % mod + mod) % mod); return 0;
}

Luogu4084 [USACO17DEC]Barn Painting (树形DP)的更多相关文章

  1. [USACO17DEC]Barn Painting (树形$dp$)

    题目链接 Solution 比较简单的树形 \(dp\) . \(f[i][j]\) 代表 \(i\) 为根的子树 ,\(i\) 涂 \(j\) 号颜色的方案数. 转移很显然 : \[f[i][1]= ...

  2. [USACO17DEC] Barn Painting - 树形dp

    设\(f[i][j]\)为\(i\)子树,当\(i\)为\(j\)时的方案数 #include <bits/stdc++.h> using namespace std; #define i ...

  3. Educational Codeforces Round 67 E.Tree Painting (树形dp)

    题目链接 题意:给你一棵无根树,每次你可以选择一个点从白点变成黑点(除第一个点外别的点都要和黑点相邻),变成黑点后可以获得一个权值(白点组成连通块的大小) 问怎么使权值最大 思路:首先,一但根确定了, ...

  4. [USACO17DEC] Barn Painting

    题目描述 Farmer John has a large farm with NN barns (1 \le N \le 10^51≤N≤105 ), some of which are alread ...

  5. [学习笔记]树形dp

    最近几天学了一下树形\(dp\) 其实早就学过了 来提高一下打开树形\(dp\)的姿势. 1.没有上司的晚会 我的人生第一道树形\(dp\),其实就是两种情况: \(dp[i][1]\)表示第i个人来 ...

  6. [USACO2002][poj1947]Rebuilding Roads(树形dp)

    Rebuilding RoadsTime Limit: 1000MS Memory Limit: 30000KTotal Submissions: 8589 Accepted: 3854Descrip ...

  7. poj2378 树形DP

    C - 树形dp Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:65536KB     64bit ...

  8. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  9. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

随机推荐

  1. v86.01 鸿蒙内核源码分析 (静态分配篇) | 很简单的一位小朋友 | 百篇博客分析 OpenHarmony 源码

    本篇关键词:池头.池体.节头.节块 内存管理相关篇为: v31.02 鸿蒙内核源码分析(内存规则) | 内存管理到底在管什么 v32.04 鸿蒙内核源码分析(物理内存) | 真实的可不一定精彩 v33 ...

  2. JAVA - ArrayList是否会越界?

    JAVA - ArrayList是否会越界? ArrayList并发add()可能出现数组下标越界异常. ArrayList是实现了基于动态数组的数据结构. LinkedList是基于链表的数据结构 ...

  3. 论文解读(ARVGA)《Learning Graph Embedding with Adversarial Training Methods》

    论文信息 论文标题:Learning Graph Embedding with Adversarial Training Methods论文作者:Shirui Pan, Ruiqi Hu, Sai-f ...

  4. 一文理解OpenStack网络

    摘要:如果你能理解OpenStack的网络,那么对于其他云平台的网络,应该也可以通过分析后理解掌握了. 本文分享自华为云社区<<跟唐老师学习云网络> - OpenStack网络实现& ...

  5. SAP Using Text Modules in Adobe Forms

    In this demo we will create an adobe form which displays text in two different languages (English or ...

  6. UiPathExcel读取操作

    一.Uipath操作Excel的相关基本概念 1.UiPath操作Excel的两组方法 App Integration > Excel   VS  System > File > W ...

  7. 一个bug肝一周...忍不住提了issue

    导航 Socket.IO是什么 Socket.IO的应用场景 为什么选socket.io-client-java 实战案例 参考 本文首发于智客工坊-<socket.io客户端向webserve ...

  8. 论HashMap、Hashtable、TreeMap、LinkedHashMap的内部排序

    参考文章 论HashMap.Hashtable.TreeMap.LinkedHashMap的内部排序

  9. C4C UI Design背景色

  10. sql server 开启一个事务

    开启事务,回滚 /*============================================================== */ /* Date : 2020年11月18日 11 ...