基础介绍,后5项为基础5元素

Q = ['q0', 'q1', 'q2', 'q3']              # 状态集合 States,共 N 种状态
V = ['v0', 'v1'] # 观测集合 Observations,共 M 种观测值
I = [ 'i{}'.format(i) for i in range(5) ] # 某个长度为 T 的状态序列,i_t 属于Q
O = [ 'o{}'.format(i) for i in range(5) ] # 状态序列对应的观测值序列,o_t 属于 V
A = [ a_ij ] # 转移概率 Transition Problity, a_ij = P( i_t+1 = q_j | i_t = q_i ) N*N
B = [ bj(o_t) ] # 发射概率 Emission Problity,b_ij = P( o_t = v_k | i_t = q_j ) N*M
Pi = [ P_i ] # 初识状态概率 P_i = P( i_1 = q_i )

基础5元素对应初始化

# Q = ['盒1', '盒2', '盒3']
Q = ['盒1', '盒2'] V = [ '红' , '黑' ]
# A = [ [ 0.2 , 0.3 , 0.5 ] ,
# [ 0 , 0.5 , 0.5 ] ,
# [ 0.4 , 0.2 , 0.2 ]]
A = [ [ 0.5 , 0.5 ] ,
[ 0.5 , 0.5 ]]
B = [ [ 0.3 , 0.7 ] ,
[ 0.5 , 0.5 ] ]
Pi = [ 0.5 , 0.5 ] def label_2_id(target):
dt = { v:k for k,v in enumerate(V)}
return [ dt[item] for item in target ]
# target = label_2_id( ['红','红','黑','红'] )
target = label_2_id( ['红','红'] )

BruteForce暴力算法,计算复杂度:

# 路径展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob ='' , pre = -1):
ret = []
path_tmp = ''
prob_tmp = ''
for k,v in enumerate(Q):
path_tmp = '{}/{}'.format(path , v)
if prob == '':
prob_tmp = '{}/{},{}'.format(prob , Pi[k] , B[k][target[0]] )
else:
prob_tmp = '{}/{},{}'.format( prob , A[pre][k] , B[k][target[0]] )
if len(target) > 1:
tmp = brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
ret.extend( tmp )
elif len(target) == 1:
ret.append([path_tmp , prob_tmp])
return ret
# 总概率展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob = 0 , pre = -1):
ret = 0
for k,v in enumerate(Q):
prob_tmp = prob
path_tmp = '{}/{}'.format(path , v)
if pre == -1 :
prob_tmp += Pi[k] * B[k][target[0]] # joint 联合概率局部
else:
prob_tmp *= A[pre][k] * B[k][target[0]]
if len(target) > 1:
ret += brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
elif len(target) == 1:
ret += prob_tmp
return ret

Forward 前向算法,时间复杂度:

def forward_algorithm( target = [] ):
prob = [ [ 0 for i in Q] for j in target ]
for t ,o in enumerate(target):
if t == 0 :
for i in range( len(Q) ):
prob[0][i] = Pi[i] * B[i][o]
else:
for id , q in enumerate(Q):
for k,v in enumerate(prob[t-1]):
print( v , A[k][id] , prob , prob[t][id] )
prob[t][id] += (v * A[k][id] * B[id][o] )
print(prob)
return prob

Backend后向算法,计算复杂度:

def backend_algorithm( target = [] ):
prob = [ [ 0.0 for i in Q] for j in target ]
length = len(target)
for t in range( length-1 , -1 , -1):
if t == length-1 :
for i in range( len(Q) ): # 后向计算有点问题
prob[t][i] = 1
else:
o = target[t+1]
for id , q in enumerate(Q):
if t == 0:
for k,v in enumerate(prob[t+1]):
prob[t][id] *= 1000
prob[t][id] += ( v * A[id][k] * B[k][o] ) * 1000
prob[t][id] /= 1000
else:
for k,v in enumerate(prob[t+1]):
prob[t][id] += v * A[id][k] * B[k][o]
for k,v in enumerate(prob[0]):
prob[0][k] = v * Pi[k] * B[k][target[0]]
return prob

HMM算法python实现的更多相关文章

  1. pageRank算法 python实现

    一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...

  2. 常见排序算法-Python实现

    常见排序算法-Python实现 python 排序 算法 1.二分法     python    32行 right = length-  :  ]   ):  test_list = [,,,,,, ...

  3. kmp算法python实现

    kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...

  4. KMP算法-Python版

                               KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...

  5. 压缩感知重构算法之IRLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  6. 压缩感知重构算法之OLS算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  7. 压缩感知重构算法之CoSaMP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  8. 压缩感知重构算法之IHT算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

  9. 压缩感知重构算法之SP算法python实现

    压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...

随机推荐

  1. 【Java】学习路径51-线程组

    平时创建线程的时候,系统会默认为线程分组. 我们可以使用 ThreadGroup tg1 = t1.getThreadGroup(); 取得t1的线程组对象. 然后使用getName获得线程组名称. ...

  2. Java套接字实现应用程序对数据库的访问

    最近在完成软件体系结构上机实验时,遇到一个有点点小难度的选做题,题目信息如下: 利用套接字技术实现应用程序中对数据库的访问.应用程序只是利用套接字连接向服务器发送一个查询的条件,而服务器负责对数据库的 ...

  3. Java SE 四大内部类

    内部类 1.成员内部类 调用成员内部类 //在外面的类的最后,写一个方法,调用成员内部类(创建对象,在访问) class Outer08{ class Inner08{ //成员内部类 public ...

  4. Windows安装Jenkins详细教程(图文教程)

    一.安装前准备 1.提前安装好jdk,可参考以下链接进行安装 Windows安装JDK详细教程(图文教程) 2.Jenkins官网下载安装包(因为本人jdk安装的是1.8,所以会和最新版jenkins ...

  5. Django ORM 事务和查询优化

    一.事务操作 模块 from django.db import transaction 1 开启事务:with transaction.atomic() from django.db import t ...

  6. 第五章:Admin管理后台

    Django奉行Python的内置电池哲学.它自带了一系列在Web开发中用于解决常见问题或需求的额外的.可选工具.这些工具和插件,例如django.contrib.redirects都必须在setti ...

  7. kubernetes给容器生命周期设置操作事件

    Kubernetes支持预启动和预结束事件. Kubernetes在容器启动的时候发送预启动事件,在容器结束的时候发送预结束事件. 定义预启动和预结束事件操作 下面是Pod的配置文件: # cat l ...

  8. GitLab 之 PlantUML 的配置及使用

    转载自:https://cloud.tencent.com/developer/article/1010617 1.PlantUML介绍 UML 统一建模语言是一个通用的可视化建模语言,用于对软件进行 ...

  9. 关于使用AWS上的RHEL-8.x/Redhat系统使用自己单独购买的Redhat官网license导致的yum命令报错处理

    我们在aws上使用市场提供的RHEL-8.x系统后,license相关的都是由aws官网一起提供了 最近笔者将aws上一台作过系统加固的RHEL-8.x导出到自己本地DC环境,也注册了Redhat官网 ...

  10. 分布式存储系统之Ceph集群RBD基础使用

    前文我们了解了Ceph集群cephx认证和授权相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/16748149.html:今天我们来聊一聊ceph集群的 ...