HMM算法python实现
基础介绍,后5项为基础5元素
Q = ['q0', 'q1', 'q2', 'q3'] # 状态集合 States,共 N 种状态
V = ['v0', 'v1'] # 观测集合 Observations,共 M 种观测值
I = [ 'i{}'.format(i) for i in range(5) ] # 某个长度为 T 的状态序列,i_t 属于Q
O = [ 'o{}'.format(i) for i in range(5) ] # 状态序列对应的观测值序列,o_t 属于 V
A = [ a_ij ] # 转移概率 Transition Problity, a_ij = P( i_t+1 = q_j | i_t = q_i ) N*N
B = [ bj(o_t) ] # 发射概率 Emission Problity,b_ij = P( o_t = v_k | i_t = q_j ) N*M
Pi = [ P_i ] # 初识状态概率 P_i = P( i_1 = q_i )
基础5元素对应初始化
# Q = ['盒1', '盒2', '盒3']
Q = ['盒1', '盒2']
V = [ '红' , '黑' ]
# A = [ [ 0.2 , 0.3 , 0.5 ] ,
# [ 0 , 0.5 , 0.5 ] ,
# [ 0.4 , 0.2 , 0.2 ]]
A = [ [ 0.5 , 0.5 ] ,
[ 0.5 , 0.5 ]]
B = [ [ 0.3 , 0.7 ] ,
[ 0.5 , 0.5 ] ]
Pi = [ 0.5 , 0.5 ]
def label_2_id(target):
dt = { v:k for k,v in enumerate(V)}
return [ dt[item] for item in target ]
# target = label_2_id( ['红','红','黑','红'] )
target = label_2_id( ['红','红'] )
BruteForce暴力算法,计算复杂度:
# 路径展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob ='' , pre = -1):
ret = []
path_tmp = ''
prob_tmp = ''
for k,v in enumerate(Q):
path_tmp = '{}/{}'.format(path , v)
if prob == '':
prob_tmp = '{}/{},{}'.format(prob , Pi[k] , B[k][target[0]] )
else:
prob_tmp = '{}/{},{}'.format( prob , A[pre][k] , B[k][target[0]] )
if len(target) > 1:
tmp = brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
ret.extend( tmp )
elif len(target) == 1:
ret.append([path_tmp , prob_tmp])
return ret
# 总概率展示角度
def brute_force_algorithm( target = [] ,path = '' ,prob = 0 , pre = -1):
ret = 0
for k,v in enumerate(Q):
prob_tmp = prob
path_tmp = '{}/{}'.format(path , v)
if pre == -1 :
prob_tmp += Pi[k] * B[k][target[0]] # joint 联合概率局部
else:
prob_tmp *= A[pre][k] * B[k][target[0]]
if len(target) > 1:
ret += brute_force_algorithm(target[1:] , path_tmp ,prob_tmp , pre = k )
elif len(target) == 1:
ret += prob_tmp
return ret
Forward 前向算法,时间复杂度:
def forward_algorithm( target = [] ):
prob = [ [ 0 for i in Q] for j in target ]
for t ,o in enumerate(target):
if t == 0 :
for i in range( len(Q) ):
prob[0][i] = Pi[i] * B[i][o]
else:
for id , q in enumerate(Q):
for k,v in enumerate(prob[t-1]):
print( v , A[k][id] , prob , prob[t][id] )
prob[t][id] += (v * A[k][id] * B[id][o] )
print(prob)
return prob
Backend后向算法,计算复杂度:
def backend_algorithm( target = [] ):
prob = [ [ 0.0 for i in Q] for j in target ]
length = len(target)
for t in range( length-1 , -1 , -1):
if t == length-1 :
for i in range( len(Q) ): # 后向计算有点问题
prob[t][i] = 1
else:
o = target[t+1]
for id , q in enumerate(Q):
if t == 0:
for k,v in enumerate(prob[t+1]):
prob[t][id] *= 1000
prob[t][id] += ( v * A[id][k] * B[k][o] ) * 1000
prob[t][id] /= 1000
else:
for k,v in enumerate(prob[t+1]):
prob[t][id] += v * A[id][k] * B[k][o]
for k,v in enumerate(prob[0]):
prob[0][k] = v * Pi[k] * B[k][target[0]]
return prob
HMM算法python实现的更多相关文章
- pageRank算法 python实现
一.什么是pagerank PageRank的Page可是认为是网页,表示网页排名,也可以认为是Larry Page(google 产品经理),因为他是这个算法的发明者之一,还是google CEO( ...
- 常见排序算法-Python实现
常见排序算法-Python实现 python 排序 算法 1.二分法 python 32行 right = length- : ] ): test_list = [,,,,,, ...
- kmp算法python实现
kmp算法python实现 kmp算法 kmp算法用于字符串的模式匹配,也就是找到模式字符串在目标字符串的第一次出现的位置比如abababc那么bab在其位置1处,bc在其位置5处我们首先想到的最简单 ...
- KMP算法-Python版
KMP算法-Python版 传统法: 从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位.这有什么难的? 我们可以 ...
- 压缩感知重构算法之IRLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之OLS算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之CoSaMP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之IHT算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
- 压缩感知重构算法之SP算法python实现
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构 ...
随机推荐
- 3-14 Python处理XML文件
xml文件处理 什么是xml文件? xml即可扩展标记语言,它可以用来标记数据.定义数据类型,是一种允许用户对自己的标记语言进行定义的源语言. 从结构上,很像HTML超文本标记语言.但他们被设计的目的 ...
- 【读书笔记】15《The Bridge of Madison County》
廊桥遗梦(梅丽尔·斯特里普主演) 罗伯特·詹姆斯·沃勒 99个笔记 The Beginning 美[|diˈklainz]v 辞谢,谢绝(邀请等)( decline的第三人称单数 );(道路.物体 ...
- 试用 ModVB(一):安装教程+使用 JSON 常量和 JSON 模式匹配
前排提醒:阅读此文章并充分尝试 ModVB 的新语法需要较长的时间.对于程序员而言,如果你工作时不用 VB,则最好避免在上班时间看,以免被领导认为你在长时间摸鱼. 什么是 ModVB ModVB 是一 ...
- E - Road Reduction
E - Road Reduction (atcoder.jp) 题意:一棵树n个点,m条路, di表示1-i的距离,问怎么选择边可以使得d2+...dn最短. 题解: 很明显,就是直接套最短路板子,判 ...
- Java基础——02
今日学习 Java API Scanner package cn.lsl.day03.demo01; //导包 import java.util.Scanner; public class demo0 ...
- django_day10_项目相关
django_day10_项目相关 展示数据的方法 数据对象obj 普通字段 obj.字段名 ====> 数据库该字段的值 带choices参数的 obj.字段名 ====> 数据库该字段 ...
- K8S_三种Port区别总结
nodePort: 外部流量访问K8S集群中Service入口的一种方式 比如外部用户要访问k8s集群中的一个Web应用,那么我们可以配置对应service的type=NodePort,nodePor ...
- 【读书笔记】C#高级编程 第二十二章 安全性
(一)身份验证和授权 安全性的两个基本支柱是身份验证和授权.身份验证是标识用户的过程,授权在验证了所标识用户是否可以访问特性资源之后进行的. 1.标识和Principal 使用标识可以验证运行应用程序 ...
- jenkins流水线部署springboot应用到k8s集群(k3s+jenkins+gitee+maven+docker)(2)
前言:上篇已介绍了jenkins在k3s环境部署,本篇继续上篇讲述流水线构建部署流程 1.从gitlab上拉取代码步骤 在jenkins中,新建一个凭证:Manage Jenkins -> Ma ...
- uniapp|微信小程序获取当前城市名称--逆地址解析
六年代码两茫茫,不思量,自难忘 6年资深前端主管一枚,只分享技术干货,项目实战经验 关注博主不迷路~ 问题 uniapp开发的小程序需要获取当前城市名称 解决步骤 看文档 当然是看uniapp文档,我 ...