我们用一个系列来讲解从需求到上线、从代码到k8s部署、从日志到监控等各个方面的微服务完整实践。

整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中间件,所用到的技术栈基本是go-zero项目组的自研组件,基本是go-zero全家桶了。

实战项目地址:https://github.com/Mikaelemmmm/go-zero-looklook

1、概述

好的服务一定是可以被及时监控的,在go-zero-looklook中我们使用目前比较流行的prometheus来作为监控工具,然后使用grafana来显示

go-zero已经在代码中给我们集成好了prometheus

// StartAgent starts a prometheus agent.
func StartAgent(c Config) {
if len(c.Host) == 0 {
return
} once.Do(func() {
enabled.Set(true)
threading.GoSafe(func() {
http.Handle(c.Path, promhttp.Handler())
addr := fmt.Sprintf("%s:%d", c.Host, c.Port)
logx.Infof("Starting prometheus agent at %s", addr)
if err := http.ListenAndServe(addr, nil); err != nil {
logx.Error(err)
}
})
})
}

无论当我们启动api、rpc都会额外启动一个goroutine 提供prometheus的服务

【注】如果像我们之前order-mq这种使用serviceGroup管理的服务,在启动文件main中要显式调用一下才可以,api、rpc不需要,配置都一样

package main
.....
func main() {
....
// log、prometheus、trace、metricsUrl.
if err := c.SetUp(); err != nil {
panic(err)
} ......
}

2、实现

2.1 配置prometheus与grafana

在项目下的docker-compose-env.yml文件中

我们来deploy/prometheus/server/prometheus.yml看看prometheus配置文件

global:
scrape_interval:
external_labels:
monitor: 'codelab-monitor' # 这里表示抓取对象的配置
scrape_configs:
- job_name: 'prometheus'
scrape_interval: 5s #重写了全局抓取间隔时间,由15秒重写成5秒
static_configs:
- targets: ['127.0.0.1:9090'] - job_name: 'order-api'
static_configs:
- targets: ['order-api:9091']
labels:
job: order-api
app: order-api
env: dev
- job_name: 'order-rpc'
static_configs:
- targets: ['order-rpc:9091']
labels:
job: order-rpc
app: order-rpc
env: dev
- job_name: 'order-mq'
static_configs:
- targets: ['order-mq:9091']
labels:
job: order-mq
app: order-mq
env: dev
- job_name: 'usercenter-api'
static_configs:
- targets: ['usercenter-api:9091']
labels:
job: usercenter-api
app: usercenter-api
env: dev
- job_name: 'usercenter-rpc'
static_configs:
- targets: ['usercenter-rpc:9091']
labels:
job: usercenter-rpc
app: usercenter-rpc
env: dev
- job_name: 'travel-api'
static_configs:
- targets: ['travel-api:9091']
labels:
job: travel-api
app: travel-api
env: dev
- job_name: 'travel-rpc'
static_configs:
- targets: ['travel-rpc:9091']
labels:
job: travel-rpc
app: travel-rpc
env: dev
- job_name: 'payment-api'
static_configs:
- targets: ['payment-api:9091']
labels:
job: payment-api
app: payment-api
env: dev
- job_name: 'payment-rpc'
static_configs:
- targets: ['payment-rpc:9091']
labels:
job: payment-rpc
app: payment-rpc
env: dev
- job_name: 'mqueue-rpc'
static_configs:
- targets: ['mqueue-rpc:9091']
labels:
job: mqueue-rpc
app: mqueue-rpc
env: dev
- job_name: 'message-mq'
static_configs:
- targets: ['message-mq:9091']
labels:
job: message-mq
app: message-mq
env: dev
- job_name: 'identity-api'
static_configs:
- targets: ['identity-api:9091']
labels:
job: identity-api
app: identity-api
env: dev
- job_name: 'identity-rpc'
static_configs:
- targets: [ 'identity-rpc:9091' ]
labels:
job: identity-rpc
app: identity-rpc
env: dev

2.2 业务配置

实现上我们业务也不需要添加任何代码(除了serviceGroup管理的服务)

我们只需要在业务配置文件中配置即可,我们拿usercenter来举例

1)api

2)rpc

3)mq(serviceGroup)

【注】(再强调一次)如果像我们之前order-mq这种使用serviceGroup管理的服务,在启动文件main中要显示调用一下才可以,api、rpc不需要

package main
.....
func main() {
....
// log、prometheus、trace、metricsUrl.
if err := c.SetUp(); err != nil {
panic(err)
} ......
}

2.3 查看

访问 http://127.0.0.1:9090/ , 点击上面菜单“Status”,再点击Targets ,蓝色的就是启动成了,红色就是没启动成功

2.4 配置grafana

访问http://127.0.0.1:3001, 默认账号、密码都是admin

配置数据源是prometheus

然后配置

【注】这里是在docker中配置的,所以http的url不能写127.0.0.1

查看是否配置成功

配置dashboard

然后点击第一个

我们添加一个cpu指标,在下方输入cpu选择

然后我们就可以看到我们想要看的监控指标

3、结尾

这里只演示了一个指标,其他想看的指标自己配置就可以了,同时你也可以在grafana添加alert报警配置,这个就不作为演示了自行整理

项目地址

https://github.com/zeromicro/go-zero

欢迎使用 go-zerostar 支持我们!

微信交流群

关注『微服务实践』公众号并点击 交流群 获取社区群二维码。

微服务从代码到k8s部署应有尽有系列(十三、服务监控)的更多相关文章

  1. 微服务从代码到k8s部署应有尽有系列(一)

    从本篇文章开始,我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 实战项目地址:https://github.com/Mikaelemmmm/go-zer ...

  2. 微服务从代码到k8s部署应有尽有系列(二、网关)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  3. 微服务从代码到k8s部署应有尽有系列(三、鉴权)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  4. 微服务从代码到k8s部署应有尽有系列(四、用户中心)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  5. 微服务从代码到k8s部署应有尽有系列(五、民宿服务)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  6. 微服务从代码到k8s部署应有尽有系列(六、订单服务)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  7. 微服务从代码到k8s部署应有尽有系列(十四、部署环境搭建)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  8. 微服务从代码到k8s部署应有尽有系列(七、支付服务)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  9. 微服务从代码到k8s部署应有尽有系列(八、各种队列)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

  10. 微服务从代码到k8s部署应有尽有系列(九、事务精讲)

    我们用一个系列来讲解从需求到上线.从代码到k8s部署.从日志到监控等各个方面的微服务完整实践. 整个项目使用了go-zero开发的微服务,基本包含了go-zero以及相关go-zero作者开发的一些中 ...

随机推荐

  1. JDBC 连接DRUID 连接池!

    一.1.创建一个floder目录,[名称lib] 2. 导入mysql.jar包和 druid.jar 包.---------->bulid path 二.创建  sourcefolder 目录 ...

  2. Codeforces Round #738 (Div. 2)

    Codeforces Round #738 (Div. 2) 跳转链接 A. Mocha and Math 题目大意 有一个长度为\(n\)的数组 可以进行无数次下面的操作,问操作后数组中的最大值的最 ...

  3. bom案例1-div拖拽

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  4. linux上printf出带颜色字体

    转载请注明来源:https://www.cnblogs.com/hookjc/ 统一定义: #define NONE         "\033[m"  #define RED   ...

  5. mac brew安装

    mac 安装homebrew出错 Failed to connect to raw.githubusercontent.com port 443: Connection refused error:原 ...

  6. 配置phpmemcache扩展,Loaded Configuration File (none)

    首先我来描述问题: 编译安装完php的扩展库memcache后,在php.ini文件中添加了memcache.so的配置文件 extension=/usr/local/php5.6.27/lib/ph ...

  7. 如何定制docker容器的系统时间

    Dockerfile加入下面一句(标红的部分): FROM xxxxxxENV JAVA_OPTS="-Dfile.encoding=UTF-8"ENV TZ=Asia/Shang ...

  8. 强化学习中REIINFORCE算法和AC算法在算法理论和实际代码设计中的区别

    背景就不介绍了,REINFORCE算法和AC算法是强化学习中基于策略这类的基础算法,这两个算法的算法描述(伪代码)参见Sutton的reinforcement introduction(2nd). A ...

  9. Java多线程经典案例分享

    汇总 案例一 案例二 案例三 案例四 案例五 案例六 案例七 案例一 实现一个容器,提供两个方法,add(),count() 写两个线程,线程1添加10个元素到容器中,线程2实现监控元素的个数,当个数 ...

  10. linux中可以查看端口占用的方法

    在自己搭建的服务器中,经常容易出现端口被占用的问题,那么怎么知道自己的端口是否被占用了呢? 可以使用下面的方法: linux中可以查看端口占用的方法. netstat -ant | grep 80 ( ...