今天学校OJ的一题判断是质数和合数。

首先我们要弄明白质数和合数的概念:质数就是除了本身和1以外没有其他因数的数,合数就是除了本身和1以外还有其他因数的数。注意:1既不是质数也不是合数

明白了概念,下面在考虑题目本身。

1、输入 :输入待判断的数n。(额外要求 2<=n<10000,且可连续输入)。

2、输出:质数:’Yes‘ ,合数:’No‘。

那么如何判断是否为质数和合数呢?

质数就是除了本身和1以外没有其他因数的数。

那么就只用遍历2~n-1中的数,让他们逐个与n取余。只要其中一个数可与n取余得0,即为可整除,即可判断不是质数,是合数。

如下算法:(需注意的是2在判断时需额外判断,因为2~n-1会报错。)

 1 #include
2 int main()
3 {
4 int n;
5 while(scanf("%d",&n)!=EOF)
6 {
7
8 if (2<n<10000)
9 {
10 int flag=1;
11 for (int i=2;i<=n-1;i++)
12 {
13 if (n%i==0)
14 {flag=0;
15 break;}
16 }
17 if (flag) printf("Yes\n");
18 else printf("No\n") ;
19 }
20 else if (n==2) printf("Yes\n");
21 else printf("输入错误\n");
22 }
23 return 0;
24 }

以上算法的复杂度是O(n),最差的情况下运行n次。如需改进,我们可以在整除的地方思考一下,要判断n在2~(n-1)处是否能整除,而在大于n/2时无论其取何值,都不可能使n被整除,所以只要判断2~n/2之间的数是否能整除n即可。

代码如下:

 1 #include
2 int main()
3 {
4 int n;
5 while(scanf("%d",&n)!=EOF)
6 {
7
8 if (2<n&&n<10000)
9 {
10 int flag=1;
11 for (int i=2;i<=n/2;i++)
12 {
13 if (n%i==0)
14 {flag=0;
15 break;}
16 }
17 if (flag) printf("Yes\n");
18 else printf("No\n") ;
19 }
20 else if (n==2) printf("Yes\n");
21 else printf("输入错误\n");
22 }
23 return 0;
24 }

实际上我们可以证明,如果n不是素数,那么n必须有一个大于1且小于或者等于√n。证明过程:

因为n不是素数,所以会存在两个数p和q,满足n=pq且1<p≤q。注意到n=√n*√n。p必须小于等于√n。

所以代码可改为如下:

 1 #include<stdio.h>
2 #include<math.h>
3
4 int main()
5 {
6 int n;
7 while(scanf("%d",&n)!=EOF)
8 {
9
10 if (3<n&&n<10000)
11 {
12 int flag=1;
13 for (int i=2;i<=(int)sqrt(n);i++)
14 {
15 if (n%i==0)
16 {flag=0;
17 break;}
18 }
19 if (flag) printf("Yes\n");
20 else printf("No\n") ;
21 }
22 else if (n==2||n==3) printf("Yes\n");
23 else printf("输入错误\n");
24 }
25 return 0;
26 }

这就是今天get到的一个算法。

此外,通过我的思考我解决了一个我遇到的一个问题。在循环判断语句中,根据判断条件会进行循环判断,如果要待循环全部进行完进行一个总的判断,可设置一个标志变量记录。(就比如本题,要等所有在区间内的数全部测试是否能整除,才能判断是否为质数,这时可添加一个局部变量flag来记录每次循环判断的值并最终进行汇总)。

路漫漫~~~~

C语言之判断质数算法的更多相关文章

  1. 基于R语言的梯度推进算法介绍

    通常来说,我们可以从两个方面来提高一个预测模型的准确性:完善特征工程(feature engineering)或是直接使用Boosting算法.通过大量数据科学竞赛的试炼,我们可以发现人们更钟爱于Bo ...

  2. isprime_判断质数

    判断质数的方法有很多,首先是最简单的试除法,判断n以内的质数的话时间复杂度为n*sqrt(n)当然是很慢的了 下面提供三种判断质数的方法: 首先是跑5051ms的这个是埃拉托斯特尼筛法 且不加优化 核 ...

  3. C# 判断质数的2种基本方法

    质数(prime number)又称素数,有无限个. 质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数. 目前学习了判断数字n是否为质数的2种基本方法: 一.计数法 根据定义,既然质数只 ...

  4. 大数据技术之_16_Scala学习_13_Scala语言的数据结构和算法_Scala学习之旅收官之作

    第十九章 Scala语言的数据结构和算法19.1 数据结构(算法)的介绍19.2 看几个实际编程中遇到的问题19.2.1 一个五子棋程序19.2.2 约瑟夫问题(丢手帕问题)19.2.3 其它常见算法 ...

  5. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

  6. C语言实现粒子群算法(PSO)一

    最近在温习C语言,看的书是<C primer Plus>,忽然想起来以前在参加数学建模的时候,用过的一些智能算法,比如遗传算法.粒子群算法.蚁群算法等等.当时是使用MATLAB来实现的,而 ...

  7. c语言 如何判断是不是 可显字符

    c语言 如何判断是不是 可显字符int isprint(int c)若可显示返回1,否则0:要包含头文件ctype.h

  8. 李洪强漫谈iOS开发[C语言-043]-判断较早日期

    李洪强漫谈iOS开发[C语言-043]-判断较早日期

  9. JAVA判断质数

    好久没写了,今天做题有点忘了,不会写了.重新做了一份,整理出来. import java.util.Scanner; public class 判断质数 { public static boolean ...

随机推荐

  1. Lesson7——Pandas 使用自定义函数

    pandas目录 简介 如果想要应用自定义的函数,或者把其他库中的函数应用到 Pandas 对象中,有以下三种方法: 操作整个 DataFrame 的函数:pipe() 操作行或者列的函数:apply ...

  2. 编写PHP扩展

    转载请注明来源:https://www.cnblogs.com/hookjc/ PHP 5.2 环境的扩展(PHP Extension) 需求:比如开发一个叫做 heiyeluren  的扩展,扩展里 ...

  3. TreeMap或者HashMap中的entrySet()方法

    查看entrySet()源码 /** * Returns a {@link Set} view of the mappings contained in this map. * * <p> ...

  4. WJMZBMR(陈立杰)在成都赛区开幕式上的讲话

    2013年10月19日 18:05:44 各位选手,各位教练,大家好,我是来自清华大学交叉信息学院的陈立杰,今天很荣幸站在这里代表全体参赛选手发言.对于我来说,这是我第一次正式参加ACM的比赛.不过我 ...

  5. Python--列表简介

    Python--列表简介 目录 Python--列表简介 一.列表 1. 访问列表元素 2. 索引从0而不是1开始 3. 使用列表中的各个值 二.修改.添加和删除元素 1. 修改列表元素 2. 在列表 ...

  6. Sublime Text3安装及汉化

    Sublime Text 是一款流行的代码编辑器软件,也是HTML和散文先进的文本编辑器,可运行在Linux,Windows和Mac OS X.也是许多程序员喜欢使用的一款文本编辑器软件. 下载地址: ...

  7. SQLServer误删ReportServerTempDB导致打不开其他库——解决方案

    无意间删除了ReportServerTempDB库和ReportServer 导致其他库连接不上 错误:报表服务器无法打开与报表服务器数据库的连接.所有请求和处理都要求与数据库建立连接. 解决方案: ...

  8. Oracle - Trunc() 函数截取日期&截取数值

    Oracle TRUNC函数可以截取数字和日期类型:截取日期:select to_char(sysdate,'yyyy-mm-dd hh24:mi:ss') from dual; --显示当前时间 s ...

  9. Solution -「ZJOI 2013」「洛谷 P3337」防守战线

    \(\mathcal{Description}\)   Link.   有 \(n\) 个位置,从左至右编号 \(1\sim n\).在第 \(i\) 个位置放一座塔的代价为 \(c_i\),一个位置 ...

  10. node(s) didn‘t match node selector.

    k8s集群中,有pod出现了 Pending ,通过 kubectl describe pod 命令,发现了如下报错 0/4 nodes are available: 1 node(s) had ta ...