YouTube推荐系统上的深度神经网络
【总结】
在召回模型中,用到的特征比较粗,在训练过程中,目的是训练出一个用户向量u(通过用户本身的浏览和观看信息和统计学信息,假设是N维的),用户向量的用途分两种,线下training和线上serving。训练拟合的是后验概率,在serving中,就直接利用u和训练好的视频向量v,做一个概率计算得到top。
在排序模型中,特征比召回的时候更细一些,除了用到召回模型的特征外,还认为其他候选信息,和视频本身的信息也是有用的,
【模型解读】
A.召回和排序
召回的时候采用用户的历史信息和文档信息;排序的时候不仅采用这些还需要用到视频特征和其他候选信息。
 
B.召回阶段
输入:
用户浏览历史、搜索历史、人口统计学信息concat而成的向量
输出:
分为离线训练和线上。线上直接用视频向量vj和用户向量u来查询N个。在training中,视频向量vj会在softmax中被学习出来,比如一个矩阵W(比如是M*N,M是视频的个数,那么W的第j行就是第j个视频的emb vj,类似CBOW训练词向量的方式)。离线训练softmax输出概率:
 
 
C.排序阶段
输入:
各种特征,其中重要的特征主要来源为:用户或item本身的特征,相似item之间的特征,负反馈特征;
为降低维度,对topn进行emb,其余直接是0向量。
输出:
serving采用指数,训练的时候拟合的是逻辑回归的权重,之所以这么定义是因为该模型的建模目标是期望观看时长,数学说明如下。设有点击的为正样本,无点击的为负样本,正样本需要根据观看时长进行加权,负样本权重为1,所以odds是,k是正样本数量,因为k很小,所以约等于,就是期望观看时长,故逻辑回归的odds就是可以视为是期望观看时长,那么在serving的推理阶段,可以直接采用指数形式,w为神经网络训练参数结果,x是输入的特征,计算得到期望观看的时长。
 
【参考链接】

(论文笔记)Deep Neural Network for YouTube Recommendation的更多相关文章

  1. 论文笔记系列-Neural Network Search :A Survey

    论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesia ...

  2. 论文笔记-Deep Affinity Network for Multiple Object Tracking

    作者: ShijieSun, Naveed Akhtar, HuanShengSong, Ajmal Mian, Mubarak Shah 来源: arXiv:1810.11780v1 项目:http ...

  3. Paper Reading:Deep Neural Networks for YouTube Recommendations

    论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...

  4. 【论文笔记】Malware Detection with Deep Neural Network Using Process Behavior

    [论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40 ...

  5. 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding

    论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...

  6. 论文笔记之:Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation xx

  7. 论文阅读(XiangBai——【AAAI2017】TextBoxes_A Fast Text Detector with a Single Deep Neural Network)

    XiangBai——[AAAI2017]TextBoxes:A Fast Text Detector with a Single Deep Neural Network 目录 作者和相关链接 方法概括 ...

  8. Deep Learning 28:读论文“Multi Column Deep Neural Network for Traffic Sign Classification”-------MCDNN 简单理解

    读这篇论文“ Multi Column Deep Neural Network for Traffic Sign Classification”是为了更加理解,论文“Multi-column Deep ...

  9. 论文翻译:2022_PACDNN: A phase-aware composite deep neural network for speech enhancement

    论文地址:PACDNN:一种用于语音增强的相位感知复合深度神经网络 引用格式:Hasannezhad M,Yu H,Zhu W P,et al. PACDNN: A phase-aware compo ...

  10. 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives

    (聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...

随机推荐

  1. RocketMq 下载安装

    下载地址 https://rocketmq.apache.org/zh/download linux安装步骤 启动nameserver bin目录下启动nameserver nohup sh mqna ...

  2. 免费赠票 | Cloud Ace 受邀参加 GTC2022 全球流量大会,助力中国企业扬帆出海!

    Cloud Ace 受邀参加 GTC2022 全球流量大会,助力中国企业扬帆出海!   大会将在 2023 年 2 月 28 日-3 月 1 日举行,地点就在福田会展中心 6 号展馆.大会门票实行收费 ...

  3. Xcode 12.x下载了iOS10.x模拟器无法创建对应Device问题修复

    转自: https://hiraku.tw/2021/04/6428/ 感谢原作者,如有侵权请评论联系删除文章 在升級到 Xcode 12 之後,有些人發現雖然 Xcode 允許安裝低版本的模擬器,但 ...

  4. [Javascript摸鱼记录] 关于js简单字符删减替换增加插入追加前中后处理

    以前总是怕死js如其名,能让我入坑润不出来,然后最近被迫写点静态html,又要用到数值运算处理, 于是又开启了「好几十个标签栏解决一个问题」的"探索路程",顺便记录一下摸鱼结果希望 ...

  5. 读后笔记 -- Python 全栈测试开发 Chapter8:接口测试

    8.1 接口测试 1. 市场分布 UI(web.app)自动化:10% 接口自动化:20% 单元测试:70% -- 测开 2. 接口类型: 1)结构划分:模块间(系统间)的接口称为内部接口:系统与第三 ...

  6. 【git】3.3 git分支-分支管理

    资料来源 (1) https://git-scm.com/book/zh/v2/Git-%E5%88%86%E6%94%AF-%E5%88%86%E6%94%AF%E7%AE%A1%E7%90%86 ...

  7. RepVGG:一个结构重参数化网络

    ​  本文来自公众号"AI大道理" ResNet.DenseNet 等复杂的多分支网络可以增强模型的表征能力,使得训练效果更好.但是多分支的结构在推理的时候效率严重不足. 看起来二 ...

  8. 集群分发xsync xcall kafka启动脚本命令,命令方式安装epel源

    安装epel库源 yum install epel-release -y --nogpgcheck yum install glances 安装开始 建立hosts 白名单 127.0.0.1 loc ...

  9. wand,week and 算法

    一般搜索的query比较短,但如果query比较长,如是一段文本,需要搜索相似的文本,这时候一般就需要wand算法,该算法在广告系统中有比较成熟的应该,主要是adsense场景,需要搜索一个页面内容的 ...

  10. Tomcat 配置文件详解之-- server.xml

    一.背景 Tomcat隶属于Apache基金会,是开源的轻量级Web应用服务器,使用非常广泛.server.xml是Tomcat中最重要的配置文件,server.xml的每一个元素都对应了Tomcat ...