使用 Link Cut Tree 维护最小生成树
简介
本文将简单介绍如何使用 Link Cut Tree 维护动态图最小生成树。
思路
最小生成树的性质:一个基环树的最小生成树,为将环上边权最大的边删除后所组成的树。
Proof:如果删除环上的其他边,那么删除的边的权一定不大于最大边的边权。所以删最大权的边的树的边权和比其他的都要小。符合最小生成树定义。
如果我们插入边 \((u,v,w)\)。先判断 \(u,v\) 之间是否连通(这个可以简单的用 LCT 完成,不会的去做 P2147 [SDOI2008] 洞穴勘测)。
- 如果不连通,那么就最小生成树上(就是 LCT 上)连边 \((u,v)\)。
- 如果连通,那么先找到路径 \((u,v)\) 上边权最大的边,如果它的边权小于等于 \(w\),那么我们要插入的边是“废边”,直接忽略。否则将边权最大的边 Cut 掉,连上 \((u,v,w)\)。
注意到 LCT 无法直接维护边权,于是我们可以将边拆点之后维护(如果不会去做 SPOJ QTREE - Query on a tree)。
至此,以上操作全部可以用 LCT 完成(只需要维护最大值和最大值位置)。时间复杂度单次期望 \(O(\log n)\)。
代码
这里以 P3366 【模板】最小生成树 为例。
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 4e5+5;
namespace LCT{
#define ls (son[i][0])
#define rs (son[i][1])
int son[N][2];
int fa[N];
bool tag[N];
int maxt[N],maxid[N];
int val[N];
inline void pushup(int i){
maxt[i]=val[i],maxid[i]=i;
if(maxt[ls]>maxt[i]){
maxt[i]=maxt[ls];maxid[i]=maxid[ls];
}
if(maxt[rs]>maxt[i]){
maxt[i]=maxt[rs];maxid[i]=maxid[rs];
}
}
inline void reverse(int i){
swap(ls,rs);tag[i]^=1;
}
inline void pushdown(int i){
if(tag[i]){
if(ls) reverse(ls);
if(rs) reverse(rs);
tag[i]=0;
}
}
inline bool get(int i){
return son[fa[i]][1]==i;
}
inline bool is_root(int i){
return son[fa[i]][0]!=i && son[fa[i]][1]!=i;
}
void update(int i){
if(!is_root(i)){
update(fa[i]);
}
pushdown(i);
}
inline void rotate(int p){
int q=fa[p],z=fa[q],k=get(p);
if(!is_root(q)){
son[z][son[z][1]==q]=p;
}
fa[p]=z;
son[q][k]=son[p][!k];
if(son[p][!k]) fa[son[p][!k]]=q;
son[p][!k]=q;
fa[q]=p;
pushup(q);
pushup(p);
}
inline void splay(int i){
update(i);
for(int f;f=fa[i],!is_root(i);rotate(i)){
if(!is_root(f)){
rotate(get(f)==get(i)?f:i);
}
}
}
inline void access(int i){
int p;
for(p=0;i;p=i,i=fa[i]){
splay(i);
son[i][1]=p;
pushup(i);
}
}
inline int find(int i){
access(i);
splay(i);
while(ls) pushdown(i),i=ls;
splay(i);
return i;
}
inline void make_root(int i){
access(i);
splay(i);
reverse(i);
}
inline void split(int u,int v){
make_root(u);
access(v);splay(v);
}
inline void link(int u,int v){
make_root(u);
if(find(v)!=u){
fa[u]=v;
}
}
inline void cut(int i){
splay(i);
fa[ls]=fa[rs]=0;
}
}
int ret=0,ec=0;
signed main(){
int n,m;
cin>>n>>m;
for(int i=1;i<=m;i++){
int u,v,w;
cin>>u>>v>>w;
LCT::val[i+n]=w;
if(LCT::find(u)!=LCT::find(v)){
LCT::link(u,i+n);LCT::link(i+n,v);
ret += w;
ec++;
continue;
}
LCT::split(u,v);
int mxid=LCT::maxid[v],mxv=LCT::maxt[v];
if(mxv<=w) continue;
ret -= mxv;
LCT::cut(mxid);
LCT::link(u,i+n);
LCT::link(i+n,v);
ret += w;
}
if(ec==(n-1)) cout<<ret;
else cout<<"orz";
return 0;
}
习题
使用 Link Cut Tree 维护最小生成树的更多相关文章
- Link Cut Tree学习笔记
从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...
- link cut tree 入门
鉴于最近写bzoj还有51nod都出现写不动的现象,决定学习一波厉害的算法/数据结构. link cut tree:研究popoqqq那个神ppt. bzoj1036:维护access操作就可以了. ...
- Link Cut Tree 总结
Link-Cut-Tree Tags:数据结构 ##更好阅读体验:https://www.zybuluo.com/xzyxzy/note/1027479 一.概述 \(LCT\),动态树的一种,又可以 ...
- Link/cut Tree
Link/cut Tree 一棵link/cut tree是一种用以表示一个森林,一个有根树集合的数据结构.它提供以下操作: 向森林中加入一棵只有一个点的树. 将一个点及其子树从其所在的树上断开. 将 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【刷题】洛谷 P3690 【模板】Link Cut Tree (动态树)
题目背景 动态树 题目描述 给定n个点以及每个点的权值,要你处理接下来的m个操作.操作有4种.操作从0到3编号.点从1到n编号. 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor ...
- Luogu 3690 Link Cut Tree
Luogu 3690 Link Cut Tree \(LCT\) 模板题.可以参考讲解和这份码风(个人认为)良好的代码. 注意用 \(set\) 来维护实际图中两点是否有直接连边,否则无脑 \(Lin ...
- [BJOI2014]大融合(Link Cut Tree)
[BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知 ...
- 学习笔记:Link Cut Tree
模板题 原理 类似树链剖分对重儿子/长儿子剖分,Link Cut Tree 也做的是类似的链剖分. 每个节点选出 \(0 / 1\) 个儿子作为实儿子,剩下是虚儿子.对应的边是实边/虚边,虚实时可以进 ...
- Codeforces Round #339 (Div. 2) A. Link/Cut Tree 水题
A. Link/Cut Tree 题目连接: http://www.codeforces.com/contest/614/problem/A Description Programmer Rostis ...
随机推荐
- 应用DriverManager类创建sqlserver数据库连接实例 JSP中使用数据库
JSP中使用数据库 1.JDBC介绍 java数据库连接(java Database Connectivity ,JDBC)是一种用于执行SQL语句的JavaAPI ,由一组使用java编程语言编写的 ...
- 如何清除取消KMS激活
1.首先要卸载掉用KMS激活的程序. 2.卸载完成之后,以管理员身份打开命令提示符. 3.依次输入以下命令 slmgr /upk slmgr /ckms slmgr /rearm 输入完成后会显示需要 ...
- Java多线程-线程生命周期(一)
如果要问我Java当中最难的部分是什么?最有意思的部分是什么?最多人讨论的部分是什么?那我会毫不犹豫地说:多线程. Java多线程说它难,也不难,就是有点绕:说它简单,也不简单,需要理解的概念很多,尤 ...
- Ubuntu 下安装 redis 并且设置远程登陆和密码
安装redis sudo apt-get install -y redis-server 更改配置 sudo vim /etc/redis/redis.conf 如果不知道怎么找 直接在命令行模式下输 ...
- jvm之自动内存管理
一.运行时数据区 程序计数器(线程私有) 1.程序计数器占用jvm内存较小,主要用来记录当前线程所执行的字节码的位置,因为jvm的多线程都是通过cpu对线程进行来回切换,所以在某个确定的时间cpu只会 ...
- 带你了解S12直播中的“黑科技”
摘要:让精彩更流畅.让较量更清晰.让参与更沉浸.让体验更有趣,幕后的舞台,从来都是技术的战场,S12背后的名场面同样场场高能. 本文分享自华为云社区<用硬核方式打开S12名场面>,作者:华 ...
- Spring Security(1)
您好,我是湘王,这是我的博客园,欢迎您来,欢迎您再来- 虽然说互联网是一个非常开发.几乎没有边界的信息大海,但说起来有点奇怪的是,每个稍微有点规模的互联网应用都有自己的权限系统,而权限的本质却是是封闭 ...
- 《Java口袋指南》-内容总结
Java口袋指南 一.语言 1.命名 类名:大驼峰 泛型:E标识集合元素 方法名:小驼峰 变量名:小写 包名:小写或下划线 2.词法元素/token 字符串压缩优化 ...
- 【大数据面试】sqoop:空值、数据一致性、列式存储导出、数据量、数据倾斜
一.有没有遇到过问题,怎么进行解决的 1.空值问题 本质:hive底层存储空数据使用\n<==>MySQL存储空数据使用null 解决:双向导入均分别使用两个参数☆,之前讲过 2.数据一致 ...
- 过压保护芯片,高输入电压(OVP)
PW2606是一种前端过电压和过电流保护装置.它实现了广泛的输入电压范围从2.5V到40V.过电压阈值可在外部编程或设置为内部默认设置.集成功率路径nFET开关的超低电阻确保了更好的性能电池充电系统应 ...