题目描述

Kiana 最近沉迷于一款神奇的游戏无法自拔。

简单来说,这款游戏是在一个平面上进行的。

有一架弹弓位于 (0,0)(0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如 y=ax^2+bxy=ax2+bx 的曲线,其中 a,ba,b 是Kiana 指定的参数,且必须满足 a < 0a<0,a,ba,b 都是实数。

当小鸟落回地面(即 xx 轴)时,它就会瞬间消失。

在游戏的某个关卡里,平面的第一象限中有 nn 只绿色的小猪,其中第 ii 只小猪所在的坐标为 \left(x_i,y_i \right)(xi​,yi​)。

如果某只小鸟的飞行轨迹经过了 \left( x_i, y_i \right)(xi​,yi​),那么第 ii 只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

如果一只小鸟的飞行轨迹没有经过 \left( x_i, y_i \right)(xi​,yi​),那么这只小鸟飞行的全过程就不会对第 ii 只小猪产生任何影响。

例如,若两只小猪分别位于 (1,3)(1,3) 和 (3,3)(3,3),Kiana 可以选择发射一只飞行轨迹为 y=-x^2+4xy=−x2+4x 的小鸟,这样两只小猪就会被这只小鸟一起消灭。

而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

这款神奇游戏的每个关卡对 Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

假设这款游戏一共有 TT 个关卡,现在 Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

输入输出格式

输入格式:

第一行包含一个正整数 TT,表示游戏的关卡总数。

下面依次输入这 TT 个关卡的信息。每个关卡第一行包含两个非负整数 n,mn,m,分别表示该关卡中的小猪数量和 Kiana 输入的神秘指令类型。接下来的 nn 行中,第 ii 行包含两个正实数 x_i,y_ixi​,yi​,表示第 ii 只小猪坐标为 (x_i,y_i)(xi​,yi​)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

如果 m=0m=0,表示Kiana输入了一个没有任何作用的指令。

如果 m=1m=1,则这个关卡将会满足:至多用 \lceil n/3 + 1 \rceil⌈n/3+1⌉ 只小鸟即可消灭所有小猪。

如果 m=2m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少 \lfloor n/3 \rfloor⌊n/3⌋ 只小猪。

保证 1\leq n \leq 181≤n≤18,0\leq m \leq 20≤m≤2,0 < x_i,y_i < 100<xi​,yi​<10,输入中的实数均保留到小数点后两位。

上文中,符号 \lceil c \rceil⌈c⌉ 和 \lfloor c \rfloor⌊c⌋ 分别表示对 cc 向上取整和向下取整,例如:\lceil 2.1 \rceil = \lceil 2.9 \rceil = \lceil 3.0 \rceil = \lfloor 3.0 \rfloor = \lfloor 3.1 \rfloor = \lfloor 3.9 \rfloor = 3⌈2.1⌉=⌈2.9⌉=⌈3.0⌉=⌊3.0⌋=⌊3.1⌋=⌊3.9⌋=3。

输出格式:

对每个关卡依次输出一行答案。

输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量。

输入输出样例

输入样例#1: 复制

2
2 0
1.00 3.00
3.00 3.00
5 2
1.00 5.00
2.00 8.00
3.00 9.00
4.00 8.00
5.00 5.00
输出样例#1: 复制

1
1
输入样例#2: 复制

3
2 0
1.41 2.00
1.73 3.00
3 0
1.11 1.41
2.34 1.79
2.98 1.49
5 0
2.72 2.72
2.72 3.14
3.14 2.72
3.14 3.14
5.00 5.00
输出样例#2: 复制

2
2
3
输入样例#3: 复制

1
10 0
7.16 6.28
2.02 0.38
8.33 7.78
7.68 2.09
7.46 7.86
5.77 7.44
8.24 6.72
4.42 5.11
5.42 7.79
8.15 4.99
输出样例#3: 复制

6

说明

【样例解释1】

这组数据中一共有两个关卡。

第一个关卡与【问题描述】中的情形相同,22只小猪分别位于(1.00,3.00)(1.00,3.00)和 (3.00,3.00)(3.00,3.00),只需发射一只飞行轨迹为y = -x^2 + 4xy=−x2+4x的小鸟即可消灭它们。

第二个关卡中有55只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x^2 + 6xy=−x2+6x上,故Kiana只需要发射一只小鸟即可消灭所有小猪。

【数据范围】

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
bool vis[];
double x[],y[];
int t,n,m,ans=0x7f7f7f7f;
struct nond{ double a,b; }p[];
double abss(double x){
return x<?-x:x;
}
bool judge(int i,int j,int num){
double a1=x[i]*x[i]*x[j],b1=x[j]*y[i];
double a2=x[j]*x[j]*x[i],b2=x[i]*y[j];
double ena=(b1-b2)/(a1-a2);
double enb=(y[i]-x[i]*x[i]*ena)/x[i];
if(ena>=-0.000000001) return false;//直线弹道
p[num].a=ena;p[num].b=enb;
return true;
}
int work(int num){
int cns=;
for(int i=;i<=n;i++)
if(!vis[i]){
double eny=x[i]*x[i]*p[num].a+x[i]*p[num].b;
if(abss(eny-y[i])<0.000000001){
vis[i]=;
cns++;
}
}
return cns;
}
void dfs(int now,int tot){
if(tot>=ans) return ;
if(now==n+){
ans=tot;
return ;
}
if(!vis[now]){
bool f=;int bns[];
for(int i=;i<=n;i++) bns[i]=vis[i];
for(int i=now+;i<=n;i++)
if(!vis[i]&&judge(now,i,tot+)){
f=;work(tot+);
dfs(now+,tot+);
for(int k=;k<=n;k++) vis[k]=bns[k];
}
if(f==){ vis[now]=;dfs(now+,tot+);vis[now]=; }
}
else dfs(now+,tot);
}
int main(){
freopen("angrybirds.in","r",stdin);
freopen("angrybirds.out","w",stdout);
scanf("%d",&t);
while(t--){
memset(vis,,sizeof(vis));
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
scanf("%lf%lf",&x[i],&y[i]);
dfs(,);
printf("%d\n",ans);
ans=0x7f7f7f7f;
}
return ;
}

95暴力dfs

洛谷 P2831 愤怒的小鸟的更多相关文章

  1. 洛谷P2831 愤怒的小鸟

    洛谷P2831 愤怒的小鸟 原题链接 题解 首先简单数学公式送上. \(ax_1^2+bx_1=y_1\) \(ax_2^2+bx_2=y_2\) \(ax_1^2x_2+bx_1x_2=y_1x_2 ...

  2. 洛谷P2831 愤怒的小鸟 + 篮球比赛1 2

    这三道题一起做,有一点心得吧. 愤怒的小鸟,一眼看上去是爆搜,但是实现起来有困难(我打了0分出来). 还有一种解法是状压DP. 抛物线一共只有那么多条,我们枚举抛物线(枚举两个点),这样就能够预处理出 ...

  3. 洛谷P2831 愤怒的小鸟——贪心?状压DP

    题目:https://www.luogu.org/problemnew/show/P2831 一开始想 n^3 贪心来着: 先按 x 排个序,那么第一个不就一定要打了么? 在枚举后面某一个,和它形成一 ...

  4. 2018.11.02 洛谷P2831 愤怒的小鸟(状压dp)

    传送门 状压一眼题. 直接f[i]f[i]f[i]表示未选择状态为iii时的最小次数. 然后考虑现在怎么转移. 显然可以直接枚举消掉某一个点或者某两个点,复杂度O(n22n)O(n^22^n)O(n2 ...

  5. 洛谷P2831 愤怒的小鸟(状压dp)

    题意 题目链接 Sol 这题....我样例没过就A了??..算了,就当是样例卡精度吧.. 直接状压dp一下,\(f[sta]\)表示干掉\(sta\)这个集合里面的鸟的最小操作数 转移的时候判断一下一 ...

  6. 【洛谷P2831】[NOIP2016]愤怒的小鸟

    愤怒的小鸟 题目链接 本来是刷状压DP的,然而不会.. 搜索是比较好想的,直接dfs就行了 我们可以知道两只猪确定一条抛物线 依次处理每一只猪,有以下几种方法: 1.先看已经建立的抛物线是否能打到这只 ...

  7. 洛谷 2831 (NOIp2016) 愤怒的小鸟——仅+1所以bfs优化

    题目:https://www.luogu.org/problemnew/show/P2831 状压dp.跑得很慢.(n^2*2^n) 注意只打一只猪的情况. #include<iostream& ...

  8. 【noip】跟着洛谷刷noip题2

    noip好难呀. 上一个感觉有点长了,重开一个. 36.Vigenère 密码 粘个Openjudge上的代码 #include<cstdio> #include<iostream& ...

  9. CodeForces 79D 【Password】,洛谷P3943 【星空】

    其实我做的是洛谷的P3943,但是听说fstqwq窃题...... 题目描述: 小 C 拿来了一长串星型小灯泡,假装是星星,递给小 F,想让小 F 开心一点.不过,有 着强迫症的小 F 发现,这串一共 ...

随机推荐

  1. 【Java_基础】java类加载过程与双亲委派机制

    1.类的加载.连接和初始化 当程序使用某个类时,如果该类还未被加载到内存中,则系统会通过加载.连接.初始化三个步骤来对类进行初始化.如果没有意外,jvm将会连续完成这三个步骤,有时也把这三个步骤统称为 ...

  2. sql server存储过程修改,存储到mysql笔记

    由于有些项目要迁移到mysql上,数据迁移用MySQLWorkbench就能很好的迁移,最难的是存储过程之类的. 下面是sql server存储过程和mysql存储过程的转化: SQL SERVER: ...

  3. 利用Resttemplate进行put请求

    开发中,最常用的是post.get这两种.今天我给大家展示一个利用put请求的demo,其实put请求跟post请求没啥区别,但是没有返回值. void put(String var1, @Nulla ...

  4. Linux基础学习系列目录导航

    Linux基础学习-通过VM安装RHEL7.4 Linux基础学习-命令行与图形界面切换 Linux基础学习-基本命令 Linux基础学习-RHEL7.4之YUM更换CentOS源 Linux基础学习 ...

  5. modprode

    modprobe命令 1.modprobe 命令是根据depmod -a的输出/lib/modules/version/modules.dep来加载全部的所需要模块. 2.删除模块的命令是:modpr ...

  6. 【php】 自带的过滤机制

    <?php print_r(filter_list()); ?> 输出类似: Array ( [0] => int [1] => boolean [2] => float ...

  7. Python面向对象(类之间的关系)(三)

    类与类之间的关系 在我们的世界中事物和事物之间总会有一些联系. 在面向对象中. 类和类之间也可以产生相关的关系 1. 依赖关系 执行某个动作的时候. 需要xxx来帮助你完成这个操作. 此时的关系是最轻 ...

  8. Python的第3堂课

    20181119笔记 一.内存管理相关 ①Cpython解释器的垃圾回收机制 什么是垃圾:当一个值没有被绑定任何变量名(即该值的引用计数为零时),该值就是垃圾. 垃圾回收是收回值占用的内存空间. 引用 ...

  9. bs4--官文--修改文档树

    修改文档树 Beautiful Soup的强项是文档树的搜索,但同时也可以方便的修改文档树 修改tag的名称和属性 在 Attributes 的章节中已经介绍过这个功能,但是再看一遍也无妨. 重命名一 ...

  10. git克隆/更新/提交代码步骤及示意图

      1. git clone ssh://flycm.intel.com/scm/at/atSrc 或者git clone ssh://flycm.intel.com/scm/at/atJar 或者g ...