背包+fft

既然要不选一个东西,那么我们求出前缀背包和后缀背包,每次答案就是f[i-1][w]*g[i+1][j-w]

但是这样复杂度还是n^3,跑不过,但是我们发现上面那个东西不就是个裸卷积吗,直接上fft,但是wa了...

wa的程序,大概是精度问题吧

#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
const int N = ;
int n, m, L, x, nn, mm;
int r[N * ], f[N][N], g[N][N], w[N];
complex<double> a[N * ], b[N * ];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &nn, &mm);
for(int i = ; i <= nn; ++i) scanf("%d", &w[i]);
f[][] = ;
for(int i = ; i <= nn; ++i)
for(int j = ; j <= mm; ++j)
{
f[i][j] = f[i - ][j];
if(j >= w[i]) f[i][j] = (f[i][j] + f[i - ][j - w[i]]) % ;
}
g[nn + ][] = ;
for(int i = nn; i; --i)
for(int j = ; j <= mm; ++j)
{
g[i][j] = g[i + ][j];
if(j >= w[i]) g[i][j] = (g[i][j] + g[i + ][j - w[i]]) % ;
}
for(int i = ; i <= nn; ++i)
{
for(int j = ; j <= mm; ++j)
{
L = ;
m = * j + ;
for(int k = ; k <= m; ++k) a[k] = b[k] = ;
for(int k = ; k <= j; ++k)
{
a[k] = f[i - ][k];
b[k] = g[i + ][k];
}
for(n = ; n <= m; n <<= ) ++L;
for(int k = ; k < n; ++k) r[k] = (r[k >> ] >> ) | ((k & ) << (L - ));
fft(a, );
fft(b, );
for(int k = ; k <= n; ++k) a[k] = a[k] * b[k];
fft(a, -);
int ans = (int)(a[j].real() / (double)n + 0.5);
printf("%d", ans % );
}
puts("");
}
return ;
}

写了一个正解

f[i]:装满i的方案数

c[i][j]:装满j不用i的方案数

j<w[i],自然c[i][j]=f[j],因为w[i]装不下,不可能选

j>=w[i],c[i][j]=f[j]-c[i][j-w[i]],在j-w[i]填上一个w[i]就是j,表示选到第i个物品一定选了i的方案数,相减就是不选的方案数

#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n, m;
int w[N], c[N], f[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &w[i]);
f[] = ;
for(int i = ; i <= n; ++i)
for(int j = m; j >= w[i]; --j)
f[j] = (f[j] + f[j - w[i]]) % ;
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(j >= w[i]) c[j] = (f[j] - c[j - w[i]] % + ) % ;
else c[j] = f[j];
if(j > ) printf("%d", c[j]);
}
puts("");
}
return ;
}

bzoj2287的更多相关文章

  1. BZOJ2287 【POJ Challenge】消失之物 动态规划 分治

    原文链接http://www.cnblogs.com/zhouzhendong/p/8684027.html 题目传送门 - BZOJ2287 题意 有$n$个物品,第$i$个物品的体积为$w_i$. ...

  2. 【BZOJ2287】【POJ Challenge】消失之物 背包动规

    [BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...

  3. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  4. bzoj2287【POJ Challenge】消失之物 缺一01背包

    bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...

  5. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  6. BZOJ2287: 【POJ Challenge】消失之物

    2287: [POJ Challenge]消失之物 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 254  Solved: 140[Submit][S ...

  7. BZOJ2287 消失之物

    这题貌似是个权限题qwq,我是用离线题库+本地数据包测的 题目大意: 给你\(n\)个体积分别为\(w[i]\)的物品和容积\(m\),问你将每一件物品分别去掉之后,拼出\(1\)~\(m\)中每一个 ...

  8. BZOJ2287【POJ Challenge】消失之物

    题解: 1.以前见过类似的,可以cdq分治 当l=r时就是还有一个剩余 这样时间是nmlogn的 空间是mlogn 2.首先我们可以dp出表示出j的方案数 令g[i][j]表示不能选i,表示出j的方案 ...

  9. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  10. 2018.11.06 bzoj2287: 【POJ Challenge】消失之物(背包)

    传送门 先假设所有物品都能用,做01背包求出方案数. 然后枚举每个点,分类讨论扣掉它对答案的贡献. 代码: #include<bits/stdc++.h> using namespace ...

随机推荐

  1. 真正搞明白Python中Django和Flask框架的区别

    在谈Python中Django框架和Flask框架的区别之前,我们需要先探讨如下几个问题. 一.为什么要使用框架? 为了更好地阐述这个问题,我们把开发一个应用的过程进行类比,往往开发一个应用(web应 ...

  2. 快捷搜索框(UISearchBar)简单实现 swift

    1.在故事板里面拖入一个搜索栏和一个的tableView.2.创建的ViewController,实现代理:UISearchBarDelegate,UITableViewDataSource,的UIT ...

  3. Leetcode 153.寻找旋转数组中的最小值

    寻找旋转数组中的最小值 假设按照升序排序的数组在预先未知的某个点上进行了旋转. ( 例如,数组 [0,1,2,4,5,6,7] 可能变为 [4,5,6,7,0,1,2] ). 请找出其中最小的元素. ...

  4. Codeforces Round #355 (Div. 2)-B. Vanya and Food Processor,纯考思路~~

    B. Vanya and Food Processor time limit per test 1 second memory limit per test 256 megabytes input s ...

  5. 前端开发:JavaScript---ECMAScript

    JavaScript:JavaScript是一种web前端的描述语言,也是一种基于对象(object)和事件驱动(Event Driven)的脚本语言.它运行在客户端从而减轻服务器的负担. js是一种 ...

  6. 选学霸(codevs 3372)

    题目描述 Description 老师想从N名学生中选M人当学霸,但有K对人实力相当,如果实力相当的人中,一部分被选上,另一部分没有,同学们就会抗议.所以老师想请你帮他求出他该选多少学霸,才能既不让同 ...

  7. maven坐标查询

    使用maven时,一个经常用到的操作就是去 中央仓库查询相关库的坐标,但在哪里查呢? 1 http://mvnrepository.com/ 服务器是由sonatype提供的,采用的是Nexus服务器 ...

  8. Linux下汇编语言学习笔记52 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  9. [bzoj4994][Usaco2017 Feb]Why Did the Cow Cross the Road III_树状数组

    Why Did the Cow Cross the Road III bzoj-4994 Usaco-2017 Feb 题目大意:给定一个长度为$2n$的序列,$1$~$n$个出现过两次,$i$第一次 ...

  10. CentOS 7防火墙服务FirewallD指南

    CentOS 7防火墙服务FirewallD指南 作者:chszs,未经博主同意不得转载.经许可的转载需注明作者和博客主页:http://blog.csdn.net/chszs 防火墙是一种位于内部网 ...