bzoj2287
背包+fft
既然要不选一个东西,那么我们求出前缀背包和后缀背包,每次答案就是f[i-1][w]*g[i+1][j-w]
但是这样复杂度还是n^3,跑不过,但是我们发现上面那个东西不就是个裸卷积吗,直接上fft,但是wa了...
wa的程序,大概是精度问题吧
#include<bits/stdc++.h>
using namespace std;
#define pi acos(-1)
const int N = ;
int n, m, L, x, nn, mm;
int r[N * ], f[N][N], g[N][N], w[N];
complex<double> a[N * ], b[N * ];
void fft(complex<double> *a, int f)
{
for(int i = ; i < n; ++i) if(i < r[i]) swap(a[i], a[r[i]]);
for(int i = ; i < n; i <<= )
{
complex<double> t(cos(pi / i), f * sin(pi / i));
for(int p = i << , j = ; j < n; j += p)
{
complex<double> w(, );
for(int k = ; k < i; ++k, w *= t)
{
complex<double> x = a[j + k], y = w * a[j + k + i];
a[j + k] = x + y; a[j + k + i] = x - y;
}
}
}
}
int main()
{
scanf("%d%d", &nn, &mm);
for(int i = ; i <= nn; ++i) scanf("%d", &w[i]);
f[][] = ;
for(int i = ; i <= nn; ++i)
for(int j = ; j <= mm; ++j)
{
f[i][j] = f[i - ][j];
if(j >= w[i]) f[i][j] = (f[i][j] + f[i - ][j - w[i]]) % ;
}
g[nn + ][] = ;
for(int i = nn; i; --i)
for(int j = ; j <= mm; ++j)
{
g[i][j] = g[i + ][j];
if(j >= w[i]) g[i][j] = (g[i][j] + g[i + ][j - w[i]]) % ;
}
for(int i = ; i <= nn; ++i)
{
for(int j = ; j <= mm; ++j)
{
L = ;
m = * j + ;
for(int k = ; k <= m; ++k) a[k] = b[k] = ;
for(int k = ; k <= j; ++k)
{
a[k] = f[i - ][k];
b[k] = g[i + ][k];
}
for(n = ; n <= m; n <<= ) ++L;
for(int k = ; k < n; ++k) r[k] = (r[k >> ] >> ) | ((k & ) << (L - ));
fft(a, );
fft(b, );
for(int k = ; k <= n; ++k) a[k] = a[k] * b[k];
fft(a, -);
int ans = (int)(a[j].real() / (double)n + 0.5);
printf("%d", ans % );
}
puts("");
}
return ;
}
写了一个正解
f[i]:装满i的方案数
c[i][j]:装满j不用i的方案数
j<w[i],自然c[i][j]=f[j],因为w[i]装不下,不可能选
j>=w[i],c[i][j]=f[j]-c[i][j-w[i]],在j-w[i]填上一个w[i]就是j,表示选到第i个物品一定选了i的方案数,相减就是不选的方案数
#include<bits/stdc++.h>
using namespace std;
const int N = ;
int n, m;
int w[N], c[N], f[N];
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; ++i) scanf("%d", &w[i]);
f[] = ;
for(int i = ; i <= n; ++i)
for(int j = m; j >= w[i]; --j)
f[j] = (f[j] + f[j - w[i]]) % ;
for(int i = ; i <= n; ++i)
{
for(int j = ; j <= m; ++j)
{
if(j >= w[i]) c[j] = (f[j] - c[j - w[i]] % + ) % ;
else c[j] = f[j];
if(j > ) printf("%d", c[j]);
}
puts("");
}
return ;
}
bzoj2287的更多相关文章
- BZOJ2287 【POJ Challenge】消失之物 动态规划 分治
原文链接http://www.cnblogs.com/zhouzhendong/p/8684027.html 题目传送门 - BZOJ2287 题意 有$n$个物品,第$i$个物品的体积为$w_i$. ...
- 【BZOJ2287】【POJ Challenge】消失之物 背包动规
[BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- bzoj2287【POJ Challenge】消失之物 缺一01背包
bzoj2287[POJ Challenge]消失之物 缺一01背包 链接 bzoj 思路 分治solve(l,r,arr)表示缺少物品\([l,r]\)的dp数组arr. 然后solve(l,mid ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- BZOJ2287: 【POJ Challenge】消失之物
2287: [POJ Challenge]消失之物 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 254 Solved: 140[Submit][S ...
- BZOJ2287 消失之物
这题貌似是个权限题qwq,我是用离线题库+本地数据包测的 题目大意: 给你\(n\)个体积分别为\(w[i]\)的物品和容积\(m\),问你将每一件物品分别去掉之后,拼出\(1\)~\(m\)中每一个 ...
- BZOJ2287【POJ Challenge】消失之物
题解: 1.以前见过类似的,可以cdq分治 当l=r时就是还有一个剩余 这样时间是nmlogn的 空间是mlogn 2.首先我们可以dp出表示出j的方案数 令g[i][j]表示不能选i,表示出j的方案 ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- 2018.11.06 bzoj2287: 【POJ Challenge】消失之物(背包)
传送门 先假设所有物品都能用,做01背包求出方案数. 然后枚举每个点,分类讨论扣掉它对答案的贡献. 代码: #include<bits/stdc++.h> using namespace ...
随机推荐
- 基于vue实现模糊匹配(这里以邮箱模糊匹配为例,其他的模糊匹配都可以类比)
html部分(主要部分): js: data: methods: 效果图:
- LeetCode(53) Maximum Subarray
题目 Find the contiguous subarray within an array (containing at least one number) which has the large ...
- HDU 6446 Tree and Permutation(赛后补题)
>>传送门<< 分析:这个题是结束之后和老师他们讨论出来的,很神奇:刚写的时候一直没有注意到这个是一个树这个条件:和老师讨论出来的思路是,任意两个结点出现的次数是(n-1)!, ...
- Linux环境下使用VSCode编译makefile文件的注意事项
Linux环境下使用VSCode编译makefile文件的注意事项 首先安装C/C++的两个依赖 在debug,launch会自动的生成下方的launch.json launch.json { // ...
- QT-Embedded-4.5.3在海思35xx上移植
QT4.5.3在海思3520A上移植步骤-修订版 2015年3月29日星期日, 16:59:03 1.首先要保证已经安装了海思的交叉编译器: #arm-hi + Tab key to show wh ...
- POJ2586 Y2K Accounting Bug 解题报告
Description Accounting for Computer Machinists (ACM) has sufferred from the Y2K bug and lost some vi ...
- Android GIS开发系列-- 入门季(12) 显示载天地图
在项目中可以经常需要动态加载一些图层,像投影地图服务.投影地图服务器.其实网上有大量这样的服务,比如天地图官网, . 随便点开一个服务,里面有相关的信息.那如何加载这样图层服务呢. 一.首先感谢这篇博 ...
- html5 编辑
在html中想获得矢量图形可以用svg标签.该标签画出的图形全部用代码实现. 可以用在线html编辑工具来进行所见即所得编辑,然后到处源码. 比较好用的工具有http://editor.method. ...
- 017 SSH
Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(co ...
- Telnet登入cisco router 1800
Login to Router and change to privileged modec:\>telnet 192.168.6.1Trying 192.168.6.1...Connected ...