Description

"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.A bracelet is a ring-like sequence of s beads each of which can have one of cdistinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.

给定颜色种数和环上的珠子总数,问有多少种染色方案(通过旋转和翻转相同的算同一种)。

Input

Every line of the input defines a test case and contains two integers:

the number of available colors c followed by the length of the bracelets s.

Input is terminated by c = s = 0.

Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs <= 32,

i.e. their product does not exceed 32.

Output

For each test case output on a single line the number of unique bracelets.

The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.

Sample Input

1 1

2 1

2 2

5 1

2 5

2 6

6 2

0 0

Sample Output

1

2

3

5

8

13

21


polya置换的裸题了,考虑旋转,我们枚举所有可能的旋转方式,所以得到的循环节个数为gcd(i,n),因此答案为\(\sum\limits_{i=1}^{n} c^{gcd(n,i)}\)

再考虑一下翻转,我们分奇数和偶数进行讨论,如果是奇数,那么不论如何找对称轴,都必定会形成\(\frac{n}{2}+1\)个循环节,再乘上\(n\)即可;如果是偶数,那么就会有\(\frac{n}{2}\)和\(\frac{n-2}{2}+2\)两种循环节情况,然后每种情况各占\(\frac{n}{2}\)条对称轴

最后把答案除一下置换总数\(2*n\)即可

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=a*a) if (b&1) res=res*a;
return res;
}
int main(){
while (true){
int m=read(),n=read(),ans=0;
if (!n&&!m) break;
for (int i=1;i<=n;i++) ans+=mlt(m,gcd(n,i));
if (n&1) ans+=n*mlt(m,n/2+1);
else ans+=(mlt(m,n/2+1)+mlt(m,n/2))*(n>>1);
printf("%d\n",ans/(2*n));
}
return 0;
}

[ZOJ1961]Let it Bead的更多相关文章

  1. 百练_2409 Let it Bead(Polya定理)

    描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...

  2. poj 2049 Let it Bead(polya模板)

      Description Cannery Row percent of the target audience insists that the bracelets be unique. (Just ...

  3. poj2409 Let it Bead

                                                                      Let it Bead Time Limit: 1000MS   M ...

  4. POJ1975 Median Weight Bead floyd传递闭包

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

  5. POJ 2409 Let it Bead(polya裸题)

    题目传送:http://poj.org/problem?id=2409 Description "Let it Bead" company is located upstairs ...

  6. 【POJ2409】Let it Bead Pólya定理

    [POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...

  7. POJ-1975 Median Weight Bead(Floyed)

    Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...

  8. 珍珠 Median Weight Bead 977

    描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...

  9. Median Weight Bead(最短路—floyed传递闭包)

    Description There are N beads which of the same shape and size, but with different weights. N is an ...

随机推荐

  1. http://www.doframe.com/jetoolweb/index.html

    http://www.doframe.com/jetoolweb/index.html http://www.doframe.com/jetoolweb/html/tasks/orders.html# ...

  2. CSS 空中飘动的云动画

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  3. jmeter的线程组执行顺序不以其出现的顺序发生变化

    jmeter可以同时配置多个线程组,那么他们的执行顺序是什么呢?和他们出现的顺序有什么关系呢? 先说下几个特殊的线程组:tearDown线程组和setUp线程组,tearDown线程组一定在最后执行, ...

  4. [Angular] Write Compound Components with Angular’s ContentChild

    Allow the user to control the view of the toggle component. Break the toggle component up into multi ...

  5. eclipse Alt+/ 不能提示

    普通情况下alt+/有代码提示作用,还有代码提示的快捷代码也不是alt+/,因此要恢复代码提示用alt+/.须要做两件事.  在 Window - Preferences - General - Ke ...

  6. libevent API 介绍

    基本应用场景也是使用 libevnet 的基本流程,下面来考虑一个最简单的场景,使用livevent 设置定时器,应用程序只需要执行下面几个简单的步骤即可. 1)首先初始化 libevent 库,并保 ...

  7. Selenium系列之--02 不同浏览器获取Xpath的方法

    一.Chrome浏览器 1.1 获取XPath 1.  使用浏览器打开需测试的网址,然后点击[F12]按钮,打开开发者调试工具: 2.  点击开发者工具中第一行的第一个对话框Elements,这时就看 ...

  8. 【CSS3动画实战】Mailman Icon

    周末闲来无事,就想着做点东西练练手.又苦于自己 PS 水平太差,设计不出什么好看的东西. 干脆就在 Dribbble 上逛一逛,看看有什么看起来比较屌的,实际上却很简单的东西. 一共做了 3 个,均已 ...

  9. 3 Angular 2 快速上手启动项目Demo

    Angular2.x与Angular1.x 的区别类似 Java 和 JavaScript 或者说是雷锋与雷峰塔的区别,想要运行Angular2需要安装一些第三方依赖,不会像Angular1.x那样, ...

  10. 关于 iOS 的 StoryBoard,接受的那一刻才发现她的美 - 当然美的事物都须要业心照料

    关于 iOS 的 StoryBoard,接受的那一刻才发现她的美 - 当然美的事物都须要业心照料 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循&quo ...