[ZOJ1961]Let it Bead
Description
"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.A bracelet is a ring-like sequence of s beads each of which can have one of cdistinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.
给定颜色种数和环上的珠子总数,问有多少种染色方案(通过旋转和翻转相同的算同一种)。
Input
Every line of the input defines a test case and contains two integers:
the number of available colors c followed by the length of the bracelets s.
Input is terminated by c = s = 0.
Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs <= 32,
i.e. their product does not exceed 32.
Output
For each test case output on a single line the number of unique bracelets.
The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.
Sample Input
1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0
Sample Output
1
2
3
5
8
13
21
polya置换的裸题了,考虑旋转,我们枚举所有可能的旋转方式,所以得到的循环节个数为gcd(i,n),因此答案为\(\sum\limits_{i=1}^{n} c^{gcd(n,i)}\)
再考虑一下翻转,我们分奇数和偶数进行讨论,如果是奇数,那么不论如何找对称轴,都必定会形成\(\frac{n}{2}+1\)个循环节,再乘上\(n\)即可;如果是偶数,那么就会有\(\frac{n}{2}\)和\(\frac{n-2}{2}+2\)两种循环节情况,然后每种情况各占\(\frac{n}{2}\)条对称轴
最后把答案除一下置换总数\(2*n\)即可
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=a*a) if (b&1) res=res*a;
return res;
}
int main(){
while (true){
int m=read(),n=read(),ans=0;
if (!n&&!m) break;
for (int i=1;i<=n;i++) ans+=mlt(m,gcd(n,i));
if (n&1) ans+=n*mlt(m,n/2+1);
else ans+=(mlt(m,n/2+1)+mlt(m,n/2))*(n>>1);
printf("%d\n",ans/(2*n));
}
return 0;
}
[ZOJ1961]Let it Bead的更多相关文章
- 百练_2409 Let it Bead(Polya定理)
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...
- poj 2049 Let it Bead(polya模板)
Description Cannery Row percent of the target audience insists that the bracelets be unique. (Just ...
- poj2409 Let it Bead
Let it Bead Time Limit: 1000MS M ...
- POJ1975 Median Weight Bead floyd传递闭包
Description There are N beads which of the same shape and size, but with different weights. N is an ...
- POJ 2409 Let it Bead(polya裸题)
题目传送:http://poj.org/problem?id=2409 Description "Let it Bead" company is located upstairs ...
- 【POJ2409】Let it Bead Pólya定理
[POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...
- POJ-1975 Median Weight Bead(Floyed)
Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...
- 珍珠 Median Weight Bead 977
描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...
- Median Weight Bead(最短路—floyed传递闭包)
Description There are N beads which of the same shape and size, but with different weights. N is an ...
随机推荐
- cmd的操作命令导出导入.dmp文件
利用cmd的操作命令导出,详情如下(备注:方法二是转载网上的教程): 1:G:\Oracle\product\10.1.0\Client_1\NETWORK\ADMIN目录下有个tnsname.ora ...
- Visual studio 2017 中的Javascript智能提示与调试
1.智能提示 对于JS文件中的API,你若需要让那个JS文件中的方法能够在你写的那个JS文件中能够智能显示的话,直接把它拉进你的JS文件中就好了. 举个例子:你想 在你正在写的a.js文件中引用b.j ...
- [javase学习笔记]-9.2 单继承与多重继承
这一节我们来看java中的单继承和多重继承. 在java语言中,支持的是单继承,不直接支持多继承,可是对C++中的多继承进行了改良. 那么什么是单继承和多继承呢? 单继承:一个子类仅仅能有一个直接父类 ...
- ZOJ 2706 Thermal Death of the Universe (线段树)
题目链接:ZOJ 2706 Thermal Death of the Universe (线段树) 题意:n个数.m个操作. 每一个操作(a,b)表示(a,b)全部值更新为这个区间的平均数:1.当前的 ...
- Jenkins系列之-—05 节点配置
一.节点配置 1. 进入[系统管理]-[节点管理]-[新建节点],录入节点名,选择Permanent Agent,下一步录入节点详细配置信息,如下: Name:节点名称 Description:节点描 ...
- 性能监控 -- 中间件性能监控【Weblogic控制台】
通过WebLogic管理控制台可以实时获取各性能指标,通过控制台,可以对weblogic的性能及运行状况,发布的应用.资源等进行监视 1. 进入Weblogic管理控制台,单击服务器,选择一台需监控的 ...
- 初识 flask
1,Python现阶段三大主流web框架Django, Tornado, Flask对比 Django主要特点是大而全,集成了很多组件,列如:Models Admin Form等等,不管用得用不着反正 ...
- Hibernate中Criteria的完整用法?
http://www.cnblogs.com/mabaishui/archive/2009/10/16/1584510.html
- Okapi BM25 (BM stands for Best Matching)
Okapi BM25 - Wikipedia https://en.wikipedia.org/wiki/Okapi_BM25 In information retrieval, Okapi BM25 ...
- fzu 2150(bfs)
Problem 2150 Fire Game Accept: 693 Submit: 2657 Time Limit: 1000 mSec Memory Limit : 32768 KB ...