[ZOJ1961]Let it Bead
Description
"Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you can deduce from the company name, their business is beads. Their PR department found out that customers are interested in buying colored bracelets. However, over 90 percent of the target audience insists that the bracelets be unique. (Just imagine what happened if two women showed up at the same party wearing identical bracelets!) It's a good thing that bracelets can have different lengths and need not be made of beads of one color. Help the boss estimating maximum profit by calculating how many different bracelets can be produced.A bracelet is a ring-like sequence of s beads each of which can have one of cdistinct colors. The ring is closed, i.e. has no beginning or end, and has no direction. Assume an unlimited supply of beads of each color. For different values of s and c, calculate the number of different bracelets that can be made.
给定颜色种数和环上的珠子总数,问有多少种染色方案(通过旋转和翻转相同的算同一种)。
Input
Every line of the input defines a test case and contains two integers:
the number of available colors c followed by the length of the bracelets s.
Input is terminated by c = s = 0.
Otherwise, both are positive, and, due to technical difficulties in the bracelet-fabrication-machine, cs <= 32,
i.e. their product does not exceed 32.
Output
For each test case output on a single line the number of unique bracelets.
The figure below shows the 8 different bracelets that can be made with 2 colors and 5 beads.
Sample Input
1 1
2 1
2 2
5 1
2 5
2 6
6 2
0 0
Sample Output
1
2
3
5
8
13
21
polya置换的裸题了,考虑旋转,我们枚举所有可能的旋转方式,所以得到的循环节个数为gcd(i,n),因此答案为\(\sum\limits_{i=1}^{n} c^{gcd(n,i)}\)
再考虑一下翻转,我们分奇数和偶数进行讨论,如果是奇数,那么不论如何找对称轴,都必定会形成\(\frac{n}{2}+1\)个循环节,再乘上\(n\)即可;如果是偶数,那么就会有\(\frac{n}{2}\)和\(\frac{n-2}{2}+2\)两种循环节情况,然后每种情况各占\(\frac{n}{2}\)条对称轴
最后把答案除一下置换总数\(2*n\)即可
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
int gcd(int a,int b){return !b?a:gcd(b,a%b);}
int mlt(int a,int b){
int res=1;
for (;b;b>>=1,a=a*a) if (b&1) res=res*a;
return res;
}
int main(){
while (true){
int m=read(),n=read(),ans=0;
if (!n&&!m) break;
for (int i=1;i<=n;i++) ans+=mlt(m,gcd(n,i));
if (n&1) ans+=n*mlt(m,n/2+1);
else ans+=(mlt(m,n/2+1)+mlt(m,n/2))*(n>>1);
printf("%d\n",ans/(2*n));
}
return 0;
}
[ZOJ1961]Let it Bead的更多相关文章
- 百练_2409 Let it Bead(Polya定理)
描述 "Let it Bead" company is located upstairs at 700 Cannery Row in Monterey, CA. As you ca ...
- poj 2049 Let it Bead(polya模板)
Description Cannery Row percent of the target audience insists that the bracelets be unique. (Just ...
- poj2409 Let it Bead
Let it Bead Time Limit: 1000MS M ...
- POJ1975 Median Weight Bead floyd传递闭包
Description There are N beads which of the same shape and size, but with different weights. N is an ...
- POJ 2409 Let it Bead(polya裸题)
题目传送:http://poj.org/problem?id=2409 Description "Let it Bead" company is located upstairs ...
- 【POJ2409】Let it Bead Pólya定理
[POJ2409]Let it Bead 题意:用$m$种颜色去染$n$个点的环,如果两个环在旋转或翻转后是相同的,则称这两个环是同构的.求不同构的环的个数. $n,m$很小就是了. 题解:在旋转$i ...
- POJ-1975 Median Weight Bead(Floyed)
Median Weight Bead Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 3162 Accepted: 1630 De ...
- 珍珠 Median Weight Bead 977
描述 There are N beads which of the same shape and size, but with different weights. N is an odd numbe ...
- Median Weight Bead(最短路—floyed传递闭包)
Description There are N beads which of the same shape and size, but with different weights. N is an ...
随机推荐
- Java实现网页截屏
原文:http://www.open-open.com/code/view/1424006089452 import java.awt.AWTException; import java.awt.De ...
- 下一代的中间件必须是支持docker规范的
下一代的中间件必须是支持docker规范的,这是中间件技术走向标准规范化的必经之路. 什么是 Docker? 答案是:Docker 是下一代的云计算模式.Docker 是下一代云计算的主流趋势. Do ...
- matlab 画图技巧
基本画图工具:matlab 画图中线型及颜色设置 matlab中坐标轴设置技巧 **Matlab中的坐标轴设置技巧** axisoff; %去掉坐标轴 axistight; ...
- hdu 1385 Minimum Transport Cost(floyd && 记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...
- [转]用AOP改善javascript代码
有时候,不光要低头写代码,也要学着站在更高的角度,来思考代码怎么写,下面这篇文章,讲的关于代码设计的问题,脑洞大开. 原文: http://www.alloyteam.com/2013/08/yong ...
- Use JavaScript to Export Your Data as CSV
原文: http://halistechnology.com/2015/05/28/use-javascript-to-export-your-data-as-csv/ --------------- ...
- antd 表单验证
antd form 自带方法 /** * 获取 form 自带方法 * getFieldDecorator * getFieldsError * getFieldError * isFieldTou ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- Cts框架解析(6)-任务的运行
前两篇讲了任务的加入和9大项配置,这篇讲任务的运行. 任务的运行 任务的运行在CommandScheduler的run方法中,所以删除全部的断点,在run方法中打上断点,重新启动启动debug: 先看 ...
- Python开发【第2节】【Python运算符】
Python语言支持以下类型的运算符: 算术运算符 比较(关系)运算符 赋值运算符 逻辑运算符 位运算符 成员运算符 身份运算符 运算符优先级 1.算术运算符 假设变量a = 10,变量b = 21: ...