用php正则表达式找出div标签,div允许多层嵌套,比如在以下文本中找出class为quizPutTag的div?
<html>
<head></head>
<body>
<div class="quizPutTag">
<span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
<table cellspacing="-1" cellpadding="-1">
<tbody>
<tr>
<td style="font-size: 0px">
<div hassize="7">
<div>
</div>
<div>
</div>
</div> </td>
<td style="padding:0;padding-left: 2px; border-top: black 1px solid;line-height:normal;padding-top:1px">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td> v </td>
<td style="line-height: normal; padding-left: 1px; font-size: 90%">
<div mathtag="msubsup_sup" hassize="-1">
2
</div>
<div mathtag="msubsup_sub">
0
</div> </td>
</tr>
</tbody>
</table> +
<table cellpadding="-1" cellspacing="-1" style="margin-right:1px">
<tbody>
<tr>
<td style="border-bottom:1px solid black;padding-bottom:1px;font-size:90%"> <span> <span> <span> <span> 8? </span> <span style="vertical-align:super;font-size:90%"> 2 </span> </span> r </span> <span style="vertical-align:super;font-size:90%" dealflag="1"> 3 </span> </span> h </td>
</tr>
<tr>
<td style="padding-top:1px;font-size:90%"> <span> <span>
<table cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td> <span> <span> T </span> <span style="vertical-align:super;font-size:90%"> 2 </span> </span> r </td>
<td style="line-height: normal; padding-left: 1px; font-size: 90%">
<div mathtag="msubsup_sup" hassize="-1" dealflag="1">
2
</div>
<div mathtag="msubsup_sub">
0
</div> </td>
</tr>
</tbody>
</table> </span> <span style="vertical-align:super;font-size:90%" dealflag="1"> &nbsp; </span> </span> </td>
</tr>
</tbody>
</table> </td>
</tr>
</tbody>
</table> </span>
</div>
<!--EA-->
<div class="sanwser">
<span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">
<table cellspacing="-1" cellpadding="-1">
<tbody>
<tr>
<td style="font-size: 0px">
<div hassize="7">
<div>
</div>
</div> </td>
<td style="padding:0;padding-left: 2px; border-top: black 1px solid;line-height:normal;padding-top:1px">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td> v </td>
<td style="line-height: normal; padding-left: 1px; font-size: 90%">
<div mathtag="msubsup_sup" hassize="-1">
2
</div>
<div mathtag="msubsup_sub">
0
</div> </td>
</tr>
</tbody>
</table> +
<table cellpadding="-1" cellspacing="-1" style="margin-right:1px">
<tbody>
<tr>
<td style="border-bottom:1px solid black;padding-bottom:1px;font-size:90%"> <span> <span> <span> <span> 8? </span> <span style="vertical-align:super;font-size:90%"> 2 </span> </span> r </span> <span> 3 </span> </span> h </td>
</tr>
<tr>
<td> <span> <span>
<table cellspacing="0" cellpadding="0">
<tbody>
<tr>
<td> <span> <span> T </span> <span> 2 </span> </span> r </td>
<td style="line-height: normal; padding-left: 1px; font-size: 90%">
<div mathtag="msubsup_sup" hassize="-1" dealflag="1">
2
</div>
<div mathtag="msubsup_sub">
0
</div> </td>
</tr>
</tbody>
</table> </span> <span style="vertical-align:super;font-size:90%" dealflag="1"> &nbsp; </span> </span> </td>
</tr>
</tbody>
</table> </td>
</tr>
</tbody>
</table> </span>
</div>
</body>
</html>

结果如下图中红色文字

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAj8AAAJJCAIAAADKtcG8AAAgAElEQVR4nO1925Jct7Fl/6A/wv9hn4c5oYh5mEc/zYs8ET5xJnzG1s2SSOoSMiXKTVLdItUkD3WzJUuUPLbFORZvIrtaex5KKm9uIBMrE8DewK61IqOjCgVkLiQSWHXZVX0wEARBEERvOFiaAEEQBEGYQfUiCIIg+gPViyAIgugPVC+CIAiiP1C9CIIgiP5A9SIIgiD6A9WLIAiC6A9UL4IgCKI/UL0IgiCI/kD1IgiCIPoD1YsgCILoD1QvgiAIoj9QvQiCIIj+QPUiCIIg+gPViyAIgugPCfU6CJD2OOqD9HdDd+4IXYltDbe4T1/0qgsnxQpvzExJCmENXbv/gnBPraM5Er0grV7JFqVDvZI10Sjl0weqlzUo1atZ5Eyto2kSXSBLvcLXZOFrNenRicNd4/iuUu6Th5KBkqGjHZSZ6lTHjdIsqvqMJkqao49G0onEIYwyeUhxYqJkpR3NldRuWh0kA/jUlP5In+QUrCnC+0epEoQPfvUKSzZsV2p33D/cEgoBxRVCQw8dxnIMV6Yzm89woGm9EBpJJzqx3e0kVR8lpTGZVaQd8RMlEM2ANdvIHnGvIDI1XyqkLUYQDvjVS2rXN6reP3nX3ccR2j281Hma6VNpVDwXoSc5DP/qN3IoJck4fOavjp6B4uHyfZblRvUiCiJ96EygdNi1jB9NuspXr7FzpI/v4MOHg1MwZQOkmsxDdCmRUTrtqJPQQ/hXv6FMGaEUesjMtnXVwkY9A8XDmXyaYvm4KatDEFZAT5mRR6PlK91WQjh2ZvQhxY/pFHAMz5lCjs/kwORyWKemhw4b9bNbj5JDaSi0gr4aHjfqGSgezu2zlB+qF1EPfvVCyroR9cqUhMwzrhH1MrFamXqVWkGqF9WLaAdl1Ovg4MCqXuCpatqZkluEqhTLMVzqj0yhlE9dEpLrlUkv5Kb0wdXLRFUJbc1JkdUJu0mc3augNJZa2cxUUL2IgvCr1/BjdR4ETyTHjZOKn7SEIRw7MwykhB7UHSsdPeBwvb/kE8yGyafJg48Gnr2ok/C2lNhxox5aj56cu6ldmb6yOsnbSDilv9unY2qOVCgLRBBW9FpM3AYE0Re4Z4my6LWeuBMIoi9wzxJl0XE9cTMQRC/gbiWKQyup9wiCIAhiUTjVa/juExqNRqPRFjGqF41Go9H6M6oXjUaj0fozqheNRqPR+jOqF41GK2YHBweLc6DtiVG9bLbdnKvfoo5pTjr/81cVapIsFWKGBY2yReLWnqbDszJECrFIMdRe1tozys/ADEleMF3l1SukWLuqZli2Me3MQMnhB08jJyE+D9Fp6n6ii26adbKnNCPQs5INJWLUSal5hXm2qoKpDzJ3KUtIiymKO2kTnknP7vp359MxWVMyQSdt7riyy1FYvYosg89mCzHzXJLh9GOxlHrprmqrl5IQ6+kAzqt4JeN7vsZwa2Int5tSL1MxWNcL33plK8RUhIiHNndc2eUoqV6ZzxwzbYYQs1mmetVLCL7Hcs6RTOEMG61bsUYlFzxNKjUWyVL7xVCE52wV0mmSK9XSpKWYeknhd5i0hH2ijyI+lalGuykcJjQQPtLw8UMgn3HPybyiPnWSOQnRJ1uk8vTlQBxG23eZAf24eUZph0uT5O9Lsj5N9xrhWcpsnKcYTKnLDJRfIZnr3umOy1mOMuqVjIRMQE9ZEZ94I25Wn9LdaJVLfhDOpoSYJl7qaMOzNE5LMlD0XFA6m2i7K9laWsjZJE0zZ42QLNVorFQMYOqU1QFLDiRvPaDxde90x+UsR8XXXgVX1DorPS9S+pS4IKXdbUeVmPogGUMSEiWMzxefkTLWdLAiucrZ3skWdyWbCmyGI6PBxhrFgKcO30f1zrqcde96x/mWo+LnXqadvG1J7nA8xeMWa1oPAoCUohEdGyzZR98DpoQkJ2glb23EFwjJ1biQfEebPtBdyWWTXGOaLTRaU+feXO7UmfamMh3fWV9k3csmuUg+fcMrXnNYW72QnE5uW5UGsXz1CkfVUK8kT9NMkw8hrPRZuGupyLyKVzJICT9urFFyEuVbX1PnSsVg4onwr6RemdqzbJKV6DWWY2d1v+918DSiLY75T8ZKPvXo0W4IAYWSY+5KNz1QGEvPEp4QRxmFj0r98cyDPZPMTZQQAspqKg4RnkqfzOE4q2gLOEfr3GcoBrw8ECf6ArkrxFqZps5N7bgiy7Ez/tZGSXOsTTuEM8mHGxLZJDn5VEJkkq+Uah/b2tMse6BIIRYphoLLuhOkUg4z59tOkuvNKGlUr2JW8JQhbVqnxkKizWZULxqNRqP1Z1QvGo1Go/VnVC8ajUaj9WdULxqNRqP1Z371IgiCIIgF4VEvgiAIgmgTVC+CIAiiP1C9CIIgiP5A9SIIgiD6A9WLIAiC6A9UL4IgCKI/UL0IgiCI/kD1IgiCIPpDQr0OYvAHyxg7AxqnRxAEQeyQVi+wEQrWtjw0To8gCILYIVe9oq/JtreldmVgdBQSxT1w117kxSVBEAQxD7LUK5SK3Y2oaCEDfVEmtzPpEQRBEI2jlnoh7WAHk9TVoEcQBEG0hqyrNqSHcNnQB+JRJPXKoUcQBEE0C8Nrr/BwT76Wmty1vlrCo5jeCaR6EQRB9A7bO4f63WQ336sfqhdBEAQxgflzL+XV2OQtu2h71In+4qzUKzm+c0gQBLEaZF21MVguSZcGKu1IlORtfeDwtHqFoQmCIIgGUeWkpgAQBEEQVUH1IgiCIPoD1YsgCILoD5rMvEcQBEEQi8KpXp8QBEEQxEKgehEEQRD9gepFEARB9AeqF0EQBNEfqF4EQRBEf6B6EQRBEP2B6kUQBEH0B6oXQRAE0R+oXgRBEER/oHoRBEEQ/YHqRRAEQfQHqhdBEATRH6heBEEQRH+gehEEQRD9gepFEARB9AeqF0EQBNEfqF4EQRBEf6B6EQRBEP2B6kUQBEH0B6oXQRAE0R+oXgRBEER/8KsXQRAEQSwIj3oRBEEQRJugehEEQRD9gepFEARB9AeqF0EQBNEfqF4EQRBEf6B6EQRBEP2B6kUQBEH0B6oXQRAE0R/S6nXwNJD+pnafN4IgCGKfkdCGUDySclJWb6heBEEQRAi/ek0emrSHr9Umt6Mv5iaNptd8BEEQxP7A/0JKUa+oaIGyp3cmCIIgiMH0uVfYHr2bbAcHKo0EQRDEnsOgDeHbepNHwfaDANGBSiNBEASx5zBrQxH10j0nGwmCIIg9R62rNpR2qhdBEASRiTLqFV4oqPTnVRsEQRBEJrK+rTxunOhN2D9UO92h1EIQBEEQ86kCFYggCIIoBaoXQRAE0R/mUBS+9UcQBEGUBUWFIAiC6A+aer1HEARBEIvCqV7Dd5/QaDQajZZvd7+5c3b2BH91dfebO1QvGo1Goy1sd7+5MwzDV3c31/60uXL78TsfPHrr2qM3jh+9dvTg3NWHr1558PLho5f+8OC5S/c/+erxMAx/+vPnVC8ajUajLWxb9br2p83nf/3+o6++v/H55vpnZ9c+3Rx/fHblw7PD26eXbm0unmxeP35y/vK9YRje/89PqV40Go1GW9i26nXl9uOPvvr+9heb63882+rW5dubSzc3l042F082b17bvH705MJ794dheOPqR1QvGo1Goy1sW/V658aj7auuo483l29vLt/eHN48ffPa5rXjs629fvzk9ffuDcPwwsWbVC8ajUajLWxb9Xrz2nfXPt0cf3p25cOzw1unh7dOf/LTZ147PrtwtDl/dHrhaHPhaLNVr//92g2qF41Go9EWtq16vXH86OjjzdFHP7zw+slPn9na+aPTV482549Ozx+dbtXrV+dO2lWvH36GI2icOeJs01wkOvnTaLQWbKte564+vHx7c+X22ZXbZzvp2torxz8I2IWr94dh+OXLbaiXdOotoiXzR+z69I/y73EiNBptQduq16tXHuzeMNza709OxwL2ytHp+av3mlCv8Mj+5/89efoQHLdHW8IOSsTQ/+5Rqb/EU2IV5RbtHw2N+A/TqKRIp2Tyj/MvVdk0Gm3dtlWv3x0+vHTzn28YXrq5uXhz88ZIwF4+evLy5XvDMDz78gdLqld4ukVPTGWIflePmOPf2o5QikoC7n+iTFKfIv6RsXgGaDQabateL/zh4cWTzaVbm5/89JlLtzZv3zy7eHNz4cbmxfdPf/LTZ158//SFq09eOnywpHolj8LoXb3FJBV4B9NrFKn9IACYIt1/UqV2t8d/fTzdOgTOl0aj7bNt1es3bz9889rm4snm7ZOzizc3F29ufn/z9MKNzasnm5eub547Pv3tlScvHDb/2gvpMFRWryQfX7s7UQofq3pZc+ibC3WLRqMhtlWv/3PxwYWjzZvXNr//4PTN65s3r2/eODl99WTzyvXTF98/fe69099cfvzCpQbUa4h9TiM9FHbQe0rhdG+6PCRVBFQ7N08lPyb1AvnnzIUvuWg0Gm5b9fr1W/devfr4/PHp68dPXj9+8trx4/Pvn75ydPri0enzVx//5vLj3x4+ev7St0MLV21sLfrm1RAIRvQdrcF4UOpOou+YhXySnTPP7uRkJT6T2+P0gjyjD1nnlTN3Go22h7ZVr4+/+O7Vd/9x7vK35y/f29q5y9++dPjgpcMHLx7ef+Hde8+/8+2HXzwchuG3b91qQr1oNBqNts9295s7b9/4WhGdMX77zh3+hxQajUajLW93v7nzzT/u/fqtz3/xwof//d9v/+uvTn7+yxv/8uwHP3v25GfPnvz8lze29t9+desXz3/6928fUb1oNBqNtrzd/ebOvX/8/f4//n7/3t0H9//fwwf/9ejRvcff3X/8+NHp6Xenp49PTx+fnT35/vvTrVG9aDQajba8Ub1oNBqN1p9RvWg0Go3Wn1G9aDQajdafUb1oNBqN1p9RvSpa5heQdQ/KF4drTycaJdqi9J85k6Xmq3/Lu9SMTF/09q1X7aTNb1Xnm9yJy859P21t6tVa9eTziXrQD756c4nuUumcLburG1Evx7yUU6/qlGufqtZ51V7BUvN1zIvqtYitR73C0jl4GpNuev/QLV6aYyfRUx6JO35UmVQ4JNqixw2nKaVCCiHFVfrjeXPPK7qUk3bHfMOkJetH4qnXVdTP5LaeBzD/YdqLz0vvr7e763OGeZnyTCtrK1GvsG6kChuCN4J8/REmykAkrhJRoaE7VLYxnmSQkmlXJ/k45mXKMz7f8YEI1o/k35RS/aTG++hkJid+wXmZ5liqPuecF9VrZutevZTKPhhh0i7djg5BKlvqMK5sxb9EVYqo0Ih6CP07eJom7lhHawckn8l6cMz3QDgEFT7JGUXXRVqjIuslkYneyJ+X3j/0L83dOt8Z5kVbyu5+c+fs7IkiOhM0p15bw4tYuo2cFNZAiv9kfz2iQkN3iMy30hJkDgfnBbrNYZtTPyY/UjHUOEalU77UvKT+tetzhnnRlrLtb8x/dXdz7U+bK7cfv/PBo7euPXrr2qM3jh+9dvTgtaMH564+fOkPD567dP+Trx4Pw/D111+0qF5D8CLMqkaTxiLqpTyXTPbXI/rUS+KDPIdF8l9weDIPYJ5rqHWp+ulOvXLmZc1bqfqcYV60pWyrXtf+tPn8r99/9NX3Nz7fXP/s7PpnZ9c+3Rx/fHb88dmVD88unmxeP35y/vK9YRjevf5Jo+q1tXGNjjHpo7cPo4IOG5OFG/WjUDL1PwgQnZfJ/5C3G6W4OX4Q/9F5WZPjJhnWg5TnaOWAfqIEiudfymTZeUlTk/xP2lueF20R26rXq1ceHN46Pbx9enjr9N1bZ+/eOnv75tnFk83Fk82F65tXjk9fOTo9f7WN/62cbyw75qRf28+V2s9Z03TbqtfvDh9eurk5vHV69/73E7twsnnp/c3LR09evrwK9eLzpjAVzEYXtm+Lxfqk6bZVr3NXH16+vbly++zw9un/eP67ib16tDl/dHrh6v01qBeNRqPRVmCTdw4jr73W984hjUaj0Xo3vvai0Wg0Wn/G1140Go1G68/42otGo9Fo/dneXXNIo9FotBVY+H2v8LVXB+8cFrmsVvrqoi9iKT4539akFTH9i6v1gi4+8dqZXDD6fn77ODpN07nXlE1eex3eOr10a3Pp1ubSzc3Fm5uLNzcLvPbyZXBm9XJENPUPj8sZqoEm2fjUGzdyXdyZXDy6dHvdBqpXFwkJP/d69+bZuzfP3j45+/3J6e9PTi9c29T63OvgaSiNA/BcSVoVyU/0odCVEleSOoleNKjCUyq+ZFyFj5QKKYo7rpQ3KZm6n2jcZPIn3hD/yhTmXxer//BRn59kfvS0SPNVEohM6qDoOkq3ET9KXHBeTeU/6kSaUVO2Va+Pv/ju1Xf/ce7yt+cv39vZucvfnrv87UuHD154997z73z74RcPh2F45Z3/LKNeYaaU/CJ9FIeKT3AVpdvSELAlGStahdG4kh+QMFK4prhg3vA8mHha1zTpZLZ1kRKC+Ncp5ayj4mR8Q/cjtSy4jlHaM9RnU/mXOCiNjdjdb+78z5c/UURnjF9f/LLkf0hRToEo12g1Sy0HAfR2xZQq91UJwhOce1jl4Xwlh748TG7ruy6ZN4USmGdwvZI89cWabV2UiNb8l11HyUn0hlJXCMN51nHZ+mw//5OJW0fNYHe/ufPNP+794rkP//VXJz9/9sbPnj0J7V/+181nfnXzF89/+vdvH9X6/15gBYSlJo0qmG6kypEqQWhb85OsfuTYNeUBjAvmDVk+3+lQ79Srui5KxC7UK8mnU/UqXp/t59/Xf05b7H8r+6phNeqFqAsSK+pnPNZ3ekafbc2mXuDcdZ4FT71JPquuC9iS9F98HSUnyumZjL7gOkr+3X4kel3kP2rR4U3Zkuo1RjRxyTLSXekhTCZVxq59HEKJqzdOnCD9JecSH3AJEOdJ/3reSvEH10vyY+UTzcAM6xI6kR4qu44gmXFoZL5hiJnXcYb67CX/SuYbt8XUy21dpLWq7VsGpPm2locW+LTAYR84r4l/v9aTeoHPGtZt+5aEXua7IE/8CTWtXvIXZ7KH1pN60Wg0Go22NaoXjUaj0fozqheNRqPR+jOqF41Go9H6s7vf3Dk7e6KIzgRULxqNRqMtb9vfOfzq7ubanzZXbj9+54NHb1179Mbxo9eOHpy7+vDVKw9ePnz00h8ePHfp/idfPR6G4U9//pzqRaPRaLSFbate1/60+fyv33/01fc3Pt9c/+zs2qeb44/Prnx4dnj79NKtzcWTzevHT85fvjcMw/v/+ekeqVfyWthlL5Juh89Q81sv0a9eOvj4/DS4LqYoXBfaWm2rXlduP/7oq+9vf7G5/sezrW5dvr25dHNz6WRz8WTz5rXN60dPLrx3fxiGN65+1KV6jXeFaYc0+6X0Xr7DW2SmptNN+grOPKfkPOvSwupXXZf1lTGtuG3V650bj7avuo4+3ly+vbl8e3N48/TNa5vXjs+29vrxk9ffuzcMwwsXb3amXpMNc/A0wp5h/0HeeIP8XBI/IsedJapIXITP+HSQjp5kfiSe0bQn/UwyLC2BMmU8DyY/VdelUv7XtC5Shmm0rW3V681r3137dHP86dmVD8+2/2H58Nbpa8dnF7b/l/Joc+Fos1Wv//3ajZ7UCz9fwp2zuxHdscmBSiypwzhW0g9+SprCKXmIDtQZ6v7B46n2KbnIupTK/+rXhQJGk2yrXm8cPzr6eHP00eYnP31m+9rrteOz80en549Of/LTZ7Y3tur1q3MnfaiXsgOV9vA5pvW0OgiQ5ImQyT8lQyeTA8uUBzBueFs5na158+UHtHnWxZ3/ZPua1gWJS9tD26rXuasPL9/e/OSnz2zt9yenvz85feX4dNdy/uj0wtX7wzD88uVO1Gtr0aJHGt2ng3Wb4YddkYHKiWnKAxLX5L+41VOvUgNz8j+bei2+LtQtmmRb9Xr1yoPtu4VjAdvdfuX49JWj0/NX7/WnXkPsiVty906e80onfrQlc3PmqAXCx6ReyHN/sCXpv7iVVa/i65KTf6R9BevCl1w03bbq9bvDh5dubra2E61/Stfx6ctHT16+fG8Yhmdf/qAz9dpaeBhFVW3XeDBCsn+ocNF2hVsR/9F2hUyyfQgOSpxn6ER6qMZaS1TdfoqvS07+re16Z+mhZdelBgHaymyrXi/84eHFk82lWz/YTrpefP90ay9cffLS4YOO1YsWWgsHRAscOPe+uNFoW9uq12/efvjmtc3Fk83bJ2cXb24u3tz85KfPXLixefVk89L1zXPHp7+98uSFw55fe9EmBj4Frhp6n4/IBjPAdaH1ZVv1+j8XH1w42rx5bfP7D07fvL558/rmjZPTV082r1w/ffH90+feO/3N5ccvXKJ60Wg0Gq0N26rXr9+69+rVx+ePT18/fvL68ZPXjh+ff//0laPTF49On7/6+DeXH//28NHzl74derxqg0aj0Wjrs616ffzFd6+++49zl789f/ne1s5d/valwwcvHT548fD+C+/ee/6dbz/84uEwDL996xbVi0aj0WgL291v7rx942tFdMb47Tt3+B9SaDQajba83f3mzjf/uPfrtz7/xQsf/vd/v/2vvzr5+S9v/MuzH/zs2ZOfPXvy81/e2Np/+9WtXzz/6d+/fUT1otFoNFqXRvWi0Wg0Wn+2R+qVefUwLz6m0Wi0dmxV6nXw9G8f6B0y/fs60Gg0Gq2IrUS9Ji+MpJ+xif6mTjgk2j6MxGnSOB7Fl2g0Go1Wye79/YPPPrr41Wd/GNahXvjLrKiYhZ2j7dLYaCwKGI1GoxW3L/946Y1z/3b49nPDk86vOVRe6CCSZlKvQVYsRClpNBqNlml/u3P16PB3N69fHM4e9q1eWzO99oredajX7m6ND9hoNBqNFrfHXwxn94aze2tQryH2Qkd6h7DUO4eDoF58yUWj0Wgz2ErUa2vKBRfDSFdyrtpAXo3RaDQarZQdHb546a3/+OuXV4bvPvn688NLb/3H+1d+N6xMveY3yhWNRqNVtUtv/ccb5/7t6y9uDE/u/HjVxgvD5r+oXk6LvlCj0Wg0Wln765dXvv7ixsP7fxue/OXB3Rtf//nob3/540qu2qDRaDTamu3JneHJX4bHfx6++2R4/Nnw5C/Dk79QvWg0Go3WkN37+wdf/vHS3+5c3d79+vPDL/946cHdG8N3n9z/5uTLP176v19cHvi5F41Go9Gass8+uvjGuX87Ovzd8PiLYfe515+Phsefjb6t/CXVi0aj0WgN2Vef/eHw7eduXr84nN0bvvvk/Su/O3z7hb/95Y/Dk7/83y8uH7793AfHb/JzLxqNRqO1Z0/uDGcPt+o1fPfJsPmv4ezh8OQvw3efDE++HM4eZqkXQRAEQSwIj3oRBEEQRJugehEEQRD9gepFEARB9AeqF0EQBNEfqF4EQRBEf6B6EQRBEP2B6kUQBEH0B6oXQRAE0R8S6nVwEO8gtRfsQBAEQRAS0hoTyky0MeyT2YEgCIIgJBRQr4MRki3jUdH26HDJCUEQBLGfgF4hRVVnfHfyaHRI2EFqNzkkCIIg9hC56hXtHx0i9VQGKu0EQRDEPgP9dCr5kit8qzB0EvUcBpogjALMiyAIglgzCqhX8g3AnNdeOiuCIAhiP5GrXu6PqaheBEEQhBuG69qR11i+F2fWdqoXQRDEniNXvYanP44KP76K3h1klRp3lj5dw6ZGEARBrBZUAoIgCKI/UL0IgiCI/kD1IgiCIPqDpl7vEQRBEMSicKqXXxYJgiAIIg9UL4IgCKI/UL0IgiCI/kD1IgiCIPoD1YsgCILoD1QvgiAIoj/UVS/pp5tMP+lU5PefKv2IVKbbyW9olUULeZvvt7t2gTIjzkB4G8IdSBl4cDA1k7dwuINk5uxaQJGl2WWveCokt5OWFSxEClSvJd1SvYqhVKD21SvpWW9BOuRwW8Ghma9eExkri2iGw6caK1iIFKqoV/jPU6I/yzs+u8d3pR/tdRyFOpMoH7zdwU2Z1+LcojxzuI2HR/07iMVfK4zbwWemoQfFf/SkQBqVKYATCYntuoUvkpRZS0ebNJfo1JQpS/kvuMRR5kmeSv/kXCSfYCyHtwHIWNRtOBD01jMKq1coPEkdGveZ3NY763AwsbbrIXQ+E5/LclN45nALdTTaH9Ww6EkRPpQ8xyUP0g2lPdk4sShDfSJ6LPdDurpIecZpS4/q0JdY76PwVKYTDWRNml481oqy1k90Fkq3FaGYekWPIfCM029H3Zp0AmQSjWXtH1WpqFu3ShXklnw0R0Gldiux+PHnO0EUD0qj5DY5CoH7iAzv1lAvq0NlYOYSm+KaeDpSrfdP1p4jShKrFqooyqhX8mCd3M1UL6XdwWSCSbdJe6aiRAcuxc3RuZJ6ae3JzT+5W1a9DoQ3iMLTNtqIoKx6HcSerePepMbQp+/MdYglOJEcnkpypHzqsXTCRTKZnMUegK+9ND/J/gi3JJ8FuZl4IrEUDtvbknYqxOKqgBzH29ug/knDwc5RJsrZJzkxqRd+8OWoVzSi9cxVMpB8FIzr5mlKDhILqSJkoZH6iTrfD1T/3GvyaNhuUq/EMZfHJNpB749zU/gszg3kicSyqhdObLqBa6uX49RTGhU0rl5WelFvviU2xc3haVWvZH+rSiUZIqB6jeBRrx9GWs44XL3QY87LRGFoak/y0V8kLcVNipV8SoFwG2JzdxATDwjfqaq4RfwjipIEGEhnmAwNpiva2UQPp5SkKqUaWQK3eiFjTUtjrSiqF4xZv+81ORP14yzn8MWZjMlEXxZESUbbi5BZnFuUqs4B5FaK0tjdP3e7Q70mHsL+Uf/RUVIjCCTQZIK7h6SxYBRpLm56ZSEtUHIJrPWQnKMpVk5FUb1g8JeiiPlQWL1WiU5TNBvtTvODY/UTLAeqFzEfqF5p9JIi02vcenFXgKUy2T+oXsQcCFGVSr8AACAASURBVN9gJOLoKEvSu2q1g64Pi2Syf1C9CIIgiP5A9SIIgiD6A9WLIAiC6A811WuG93D1q2NxJtIVrj5vyqjil4xHb0t9ysbN94zzx2NVWj4Tk+RagBzCa+KJGpAukS+e864XsT3yq1OvMChShVQvR1yqV1UO0UomakB5VsGc79BeKsqpV/hsxfqlP70xztGuXiGTScvur8RBOsUkh/qoSUQptI92clToXyKpZKAe/zBWyETyKS0QUpbJWSt1jswFWRS9wKL+lRnhnRXC+lg8J8noCis9CuJ20k1yHo2bmXOTN33W1gWNbjSHnyGWpYVQSL30SYapQUZNGic27iDdlTokgyKHCNiucItGjB4HObSVuST94GmvzV/Km+IzuUAKq+SspaxOjgaEG5KccCLIsYJvNCmcKZAvJ6FnZPcpUaxuoxUbomzOwd2avyjR/vm7tQ1UUC+9cUilIydH0i4yMUnu6vxDQXKoMwEJ6HyQPtYlqMofjIuTKTvrqKQl1wKc+IH6IjLJ3LTRTH30diQnIFWFlS/zybvz5NzH0zdWn6weS/HTAGZUr4Pgyewg1IpUQElEdxHCpKx6TQynnWTioB3lr/iJDtFRlX8ydFhR+u2clQoZ+s7Q6BZQaJjWK7m+prj6RKLtSE5AqgorX+ZNUWrkPIenb6zi071b28Bc6qWkCWkED5roLkKYmI7RsHNydjpMh+9gpI3UrjLWlPYa/EHoc0FmPe6Az9p3hvoKxn0e4TtO7wNOEMkJSFVh7ss8HgX34Mh54+pl2i/LYRb1ciyJ0qggqV7IAuPHX/JRK23ptpu2o094N4mq/K0c8tXLFLGeeinHfeb5pcdV+hRUr/zju4Z6zZbzltXLNKNFMftVGwepN45ylMC0MEkm47tu9bKeEWVp686T/kFU5W+N61Yvx+ZMTlyKaF248KH8PNc4KMHbOlXkBHBnPhldClQ25+BuXVy99OQsjdmvmFfa9UYE4C4KmUj0pD5S0ElPcApz0kYWwpr5qvyTocOq00/AaGffznSfodKiSBshOqPk3sE3mnUiOmfElURVmhoYBZmUEn2onPOwEqLTkdKCj3WkDufg2ywVwF+KykYza1kMK5vRyqYzrHFGO0hTW3zKixBYfNZRNMOK6pWNZtbSD9/rnl6wsukMa5zRDnuuXl3sxGZYUb0y4H7HqUFkvofWJlY2nR1WOaktmp3abMRWuRPrgOpFEARB9AeqF0EQBNEfqF4EQRBEf2hVvcLLT8ftekunCC8aLujT0adeYue89LZ4CHB1oh+/55Mpnrrk6q8sgRMnmQ5n2COzue3wIO1KvZTGFYDq1QWQ1Yl+JSg5Co9exJXup/bqL5XAiROqV+2INVFCvZJff1O+Qzdu1L8iN8QqODzx8aA67ehlP8hEwrsmP+E0HVU1CV0kJ9GJRCcVbVRmKg23JlCfBeJtALKd7BbtoI/KSV1mlqQl8AVS5jiZQmYCS22KItkLyYCpcJAs6HYwLlx7qK9e0SocgqdX4S5CHCLe8G56H9xn9CHEz/iG5FOHnlWQP0hYarTOVBnucyuFSHqLbuxww4ccQuiHr9TTl7qcLOHtrSWw1KbIz15IQ0paEZIF3ToctoSiv3MY/h2wOgC7RSs4OnwC90GMjFV8SrcRP9GeSp/oo3r/aB9dWiSfvkzqc0fi4k58degG7qds6qxZyi+DZROYuSlKbXZ9p5clWckt1Wv6d/AWPSJayQU+EJ73JUeZCPvUK8lNAi4e0XY8J+MbB7En0Qir6EBpzx/IzxOjd5EENn74Sj3x1GVmqXf1Ujojm2Ie9SpLspJbqtf07+At+nz1ij7aiHoh3KLElD7RRxFu1mNLig42Jj27E1tWvST9mHSWHs1XL71zqSzVU695Epi5KYpvdmWapUhWckv1mv4dXHUwpMoiqV6+oL6xlY6PSR/fZi6yUVtTL1MCM+vQjcXVq3h7awlcdlNIrsIOxUlWcru/6jUAp/bkrl4HycyaxG8cNPmkZk71mnCLwlFVUiwprs7TKvmOA1Ea7k6g7/DFD4UkfOrlS11OlvD2phJYcFP48i+NTR4vPpLRPgXdFly4GVFfvYYfU5NUjnGfTPWSvO3uKmSSQqhPBHGrcCuLCducnIQd9FjKQOUsiB4HilvQyYAta9jNDZOfnNRlZgkvy5YTaPU8YYvnPzq8BucaKR2CmVaKMhda/bZyJXS4QvuLRRaruwppjXBrfObEPs99CVC9iFYxz2LVe/o8DxYn3HsCC2Kf574EqF5Eq5htsZD3RZtFC5y7TmAR7PPcl8OeqRdBEASxClC9CIIgiP5A9SIIgiD6Q031Sr4R7H6nWLrY1+2qXv+kt5wPDOpd6ipdJ40MKY6yVwwPT89uYtFuBeFIrMP5bBF1Guub4/zRk6VYJGht/3WwCvXKye+Ca5N/sdYMh2zVIfNDz9ic6lUD+tk6G1Y8x/mjU71kFP22cvR7cNEXFtKLJ/BVyHh49Ilz6GrSGQya9IOHlmYR3pWoKhnQAymILkGUjE5eoj3xLLXrjY6c6/NNnkGLJxaMKJVZvYhK9H2Y4wzR9cpPRjfB5L89FP2dw8ltJa163qMHU3iUR4frrhSSIcD+yVkg/k1Uld0CHuJKlMlD+oZEHCrTdDTizpHKkWbUQmL1iOGjUg5LRVSi78McZ4iOR5SGlFpBh8MlUEG9oo3gcax4UyAFQkLoxZRsREKD/nGqiGfTJrEGtWZG95wcVTDnEtwnWvLRzMRGTzQ9S8UjJh/dhzlWjW6KmKz5zBUstafqo9o7h4NRvSZmQiX1GlKTCkObZmGlOqTqUvevNCJkMtUrmpZooqrmXIJp4MyJlTpLUcpGTDYWj9j+HJedL6guxWfXHipctaGfwrqMha6Qs6mIeulRkLrMEV2E6o4k4lnpFn0UIROuIOJBuQ02+rauSdXAtZs/saHPZJTiEU3Ri0RsfI7Lzje5BSrNrj20rV4giqgXGGJB9UI4g/IW9qynXkiWiquXCYiT+RNrOoNmiAhGLxix2TkuO19lC1SdXXuY5aqN8V28J45K6qVT1Z+/6J6TlKyhwYjKEGkP4JMCt7SuSbVzHoV1pUw+fYnFzyB9bPGI0SGrn+Oc0ZGISHQ8Fui/PVT+3EtR+CGWJl+yok9wwNB6UMnPOMSkgJKhQaqhZ2XKRTCOWFC9JM+DkPwiOTeh9v7MTCzif+aIUQ4rnuP80fVNIW2onHBV/dfBvL8U1XAiGgKzRBAEkQLVqz0wSwRBECnMpV45b+zsG5gogiCIFPgb8wRBEER/oHoRBEEQ/YHqRRAEQfSHVfyHlEwol8vrHRyBMq/tTvrX22tnbNLHtEyVktOUt0rfcygYCx81/6ezyTKOthcvfqIZUL1K738wSvsHmSNQtAModSb/OKheRbyF3RZUL1MHitZ60f//9xrfDYdLbqWv4+lfQkQCRQcOwS5S+jQ4kQn0hZssvdVhkme0s+4ZT+m4/6RbcuLR4Ur/pAelfkz9keKJRokGjSYcX6nQm2lppKkpHaI3TLuMaBJr+f9eySqX2qXNFm3Ht1MIfCc3PhEHMStwnknnjpTqGmAaHpKJ3gYJSD5NKQKP+GTo6LmP0wA56K5M+859XBCtYnX/30sZbtrPJp6gMhXpk8OnyESsfjLVS29HDnef5yLDFTKZS2D1A3bIT6zkByl4qyvTnipV/EQzWN3/94rePYi9dFP4KDxNA3GSSJ9GJjIAC5ejXsgRvwtt8jZkZ8A0cZ3MzOoFUt025iQ2vKuvlH5uDLEZ1VOvnFOImB1t/4cUsJ70nQMSQ9oXVK8FJ6IcfMiKmE6BUmdi0kO+eiXDmUS9qnrhm27H1h03GtG0UguqV3Q4xaxVtK1eIEqdUM2qV1MTUfpHB+KLG/a0TiTpc0710h+dTb2shzUY2poofCJNqRfRMNby/72Sbg/kp8B4O1L30tM0cKe1PxGHHwS+hCBnoqnklGWSMozzAdXLlD1TipQiSTIM47ppRJ1kqldy3+UsPdEkVvT/vaLDx40St2Q7frRJAyd9pJw0O5EJkgvncDixsZ9o4ySWTlVPqX5kJzNsOvEnE5E84J6R/kiRRKMo05FWIblSoR/r0pj2na/49XUk2sAq/kNKa6Vm4oOfffNjcT44gcWplkKnE2mKdlNkiGqgelUg0K965UykBqhevaAp2k2RIaphFf/fq4ViLfKew2omUpDMvqHTKXdKm+gZ/I15giAIoj9QvQiCIIj+QPUiCIIg+kPN3zlUkOyvXx/cDmrwSc69VNDi5N0O9avei3OYv7qKrx0Sq6xD8NsC+dFnq/N6izJzxsJYpVyVRWnPC6lXElSvGWKVdZhzoQfVq2Uo36YK23tUr+KYOWMTJ1Qvj3pFr1VTnnRMOgyxdR0PnLiKPosxEZi4Gt+1TiSHjJQEPTlgoIlDhUkyUcoOiQaSFlEamHNsTWLlT0paqUnQzDoBiSl8krF85THpLE0hGk5y4s5VFxtq0jnqXwoX7YYgWvZF0hWSAefuIOlzW1K9kns12h4WlslhDgEkND6RTDISE70dCRRWathf56Z0Uxwi9KRtrNMOg0oMrZNKrpTU6Ch4aXhO5Ti8hZUfHnCT1dHJVMpVmxuqeMZKlX1+ukIaUpaKkDS5/RF13jl0FKivPZ9AeFc5/kA+yNmXQzJndlJ7piukc5J/1KHSJ/qo3t9HDFllq+calaM/6ltTxT8+vGyumt1QEqzDM8u+1GGon4RlSYJun0Z99TqQn5voA5F2hICpXbk9DNpEEDKgk9Wr12CrUYN4RNsdCZfqFmGFF3zoPLNylFhIOwjH8Mxc9bKhJPiGu8u+1GGo+CxOEvTwNOZ97ZXsYG23EkDK0XQbWTyrk0qbTd/kRfZt8pQZ3wZPPaVb9FEk+dbEStHBxqRnd1mWVS9JTiT/Cgd9iD7QpF4LbqihWsYyy774YSgtX0GSoNunQfUK7ubsh7Jkim82heec6oWIBF7Ek55FtnFr6uUrvyJrqvjHh1dSr9Y2lAR8+LJlL7kKOxQnaXL7I1r63OvA/to/n0CUht5f4Rl2sDoxtSOzU2oCrHi95iSHyljraiKQ5h4lYyWWPHwdBS8Nz6kcK5kwIgLHUZ6fqy42lAQwYwXL3pdwaSx+AphIRvtYUFm9hh/ToRyC40eRRIedMwkornCe0SUPC13hj7cjh6zkUCIzqIlKJlDhE0ZRhuRDmtQQ5A0sS4WhvsTJEwTPtjQRfRaZ5aEASY40JOlHqvP2N5QCR8Z8/gcsXWAaw7tlSeahsV+KqrS0MyB5si+IHD5Ljd1PLJKx9pepNYat8amKhie7tHrVfiY+G5pSr4JZpXrNiXky1t2mW5xhdxkriIYnu7R6DfVfU8+PFiZSKqtUrzkxW8b62nQtkOwrY0XQ/GQbUC+CIAiCMILqRRAEQfQHqhdBEATRHyqrl/K2aY13VJPXYhYJWsR/sqebKng1sBtWP+6Ztvyee21uyZzMuZq+q5wrbXCf2+JFa/XmuH5d4VPuovMI1WjEJkH18kbJ9D+/epXCbA5b3j+Lq1ftQNEOpvJuqvAWrCVJh5LtyhaeQb16QB312iV38sziIPZttWi+pAVTGvOD6jD5D8dGh0Q3eejKdL1T8rXXZCJRnkmFxodHJ5LkM3Gln+ZWMhO347vWSZUiNgjJkdpNq5nkKRGbFCricEwp2jjxnxyIcEtG0as66QcPHXUevZtsV2pMKgYc+K5UBi6N0uqlrGiYL+nuAGRNGeIOKsE3Kb2/uzSVk0UfPhmoUJKI+YZL62LlU4oMQgOfVEFiEiu9HQmkH9wmYjj0DYtsBMUhvr5J52B/6zZBqOrtkn5EHyp1miWjm2qgMsqpVzR9SMFJHtwikRMUedTkH2k07Wpr9bhP5OR5Z3XrHqgg0ydSbz5u1mTOltUcApnqpfsvpV5Iu0JM96M/lPQfyoO1WzJWzmk2pNalJekaav3OYbQ9Zzsl1xI8hsAT2RdLH4Jrc3hjYiaYzjskkHX4CtRLmZSVGOhwEfXSl09xontO3gWrupJ6DcN0yghb034c9zQt0GR1QLhPsyg9dwHUR8OvvXZ9ojsfDOQI6o4V9S+NTc40ufGsYuPb4e5zNtmhF/UyLUqSGOiwknopq4mcbitQL32/IEd25gnuUC9T1eWcZlKs6DncABb63Ct8CFk8R6D8PYPHkqhGO+SrF4hM9VIcgsO7Vi83t1LEyqqXwnMp9fKltEYtSf2XUi9TioqcZlKsfVGvH4amiuBAfi4vuVIexY+kHEkwTSrJx61eVub1zjurW3AtmlUvU/1IZwTi0NQOnj5W9ULOcR2hQz0hS6mXlZV1PyZrLBkoOYuCp1mpY2cW1P++1yQju7v4MwVrn/ygyXBW/5MhUstkSNi5SJlmBrIOl2aNnDhIYt1kwv4OzjqxaDKleZnaTauZ5Dnpb0qFhCixcO9E+4AO8fXVq1ryMw4R3fJKaN2/4keaiGPvgzDtypbAX4pqBk3WR0WsY77gUbs4FueDE1icKtEJqF7NYPWbtodnc2Y0q16tZZvqRZQG1asBVH1boCkob5WsDC1MsKlst8CBWBeoXgRBEER/oHoRBEEQ/YHqRRAEQfSHpdULueS0xjvm4FW/Oc57hJKWqhfslnXlvpjbGivnUyU9ybOV0JwRudkXgZ7qmcu+KKheFdDAujqxiHoVBLKs4cZzFEP+FX2NJHnOiNzsi6CgejV2IWvRX+kdf+UtekboX/qLjk2OCv0PQFon3Uz8J07Cu7WdKJPKdJ5UL3BlJT560InpzqNIrn60Q7QYkEDS3eSQye2wbqWJuA/izIhRDtzs0kQKOlEmVXazVyr7miinXpOC292e3FDapcXAV0giE90Vk+E4f2RS+ESsTiQUZBiNhUxKajdlAOefXFYJUbdKKSahd46ea+FAZCLSCuLR3RGlUdzsq9nsyaKSQiyECv8hBVkGd7EifvQhuh/ptnSgm8gUcSKhqnN8iGmySc+Vdovv3Hc4lDzgpaLvJp1h9NHMiEoHbvbiTiTUdp5cStBVZcyrXgfC0yKpc7Q96Sc6RAfCfxIRJ1zciYTazvW70ejhTsBJTtziWpKEyY/vKAHb87VEarceQMXVi5u9380uddtf9Yrezq+P5Fjk+AM3JB5Ucl7WiYQazpFVkFzhGQCJIcuqPIpvYLd0KR6sNb+9rczRHd0RMdoTvM3N3sVmB1OHuKqMudQL3zP5fcK7SbCgcZ8OV8XVKxM5G9jkJ+qtiHqBDPXopohRD9zsa9rsyaKiej2Vo5yCVvwUL2jrpOo5MU2hlPOwj29l9caQRqXdYtqimd0m/ZUZSdlL3sWjuyNKD3Gzr2az5xwCC2Hedw53eZxkVt/Y4z7KEMVVElb+yUkh/d1OlFlUdS7dRVZEaZyQkZa74FbJdyWxdYRWFkgZlYPMiNzsQ5C3lW12JG7ZmnRh6W8rV0IDmc1F1SmsID8EscUKinkFU1gCa1Gvqs9VFwHViyCi4GYnhmFYj3oNbb2kLYDoLMI3rHzzXUeKiL0FNzuxKvUiCIIg9gZUL4IgCKI/UL0IgiCI/jCLeknv6iqPZiJ5KW3xy69nuMhCurrX7bAe8JxIfRZ5f79NwsV3SnIKxecC1kP0cowiF3lH/dfAylLXNhpQrxqgeiEO64HqVRDzq1dxIPUQ/fZSEVZzqldxLJu6tlFHvaRzVv8yXdQJuABhxPAqHSW6CclY48YZQoSFq7cPhXJuIiwRkyYSLRuTfuOzmIdwGBRcu7BWi6y+0m4KNMBroWcj7KCPyklgdHhmVqOx2kzdWlBavaJLNbkx6aafpFGfvojSEN2/L1a0XuuFiPZJjnXn3EcYCSQdoFE/ycJIQopeibAeKJlGnIPSHm49pR2XgfHt8Kw3ndSTu5USGO2Wk1WHt0VStyKUUy/pKHHUVtg56t8UMXmmJI9Cd6wZQph2GuizLGGwj0MMkjQkAlFXSn+dD04YbAQPX8mbibM1EEjACtxP2QTqw6VumcedHsWKtQtVFBV+51Bqz1QvpTMS0Vqa1s4I+XohKqmX0u5Y8eHpJ5ggsQPhOakUN+yPq9RshKXG6ECrejk4WwMtfgRnJnDcWfJpzaoSC2nPBNXraVjUawCezOIHqFKa7ojJolFOxsxYM4TI2TOmnLsJSw9ZD1CcpD4QUbVKhKU+SU3FVxPsX1y9JP2YdJYezVcvvbNPb6TbZdVrttStCJU/9yqiXqYz1KFeuv/8WDOEKK5e7RC2yqcUEfFQm7DOLV+9irc7yikHbaoX2J7pLRNUr6fhUq8fhgoH4vg2uJz4GZqMiEQvHqteiGhE8CmCrl61czLJvz4R09khRQd7ViUsNTq0BFl9qchN7Y5yyoFPvXwJjHbLyaqVTBgxB1Svp5GhXj84CDwcjF721ngyEroKz53oOVs2VqWKDENMJjjphjOcgbBEQJpIuMkLbnUJcxLG1046GU2rbGpH9uYMBZ/s7E5gdHhmVpVYyqhFUrcW8JeiiD0t/Y7R2nq1xseHRWaxjtQtBKoXwS3UGxZfr0qv3ZfFPLNYZeoWAtVrvzHD23FEcbSwZLO9nTsbZpvI+lK3EKheBEEQRH+gehEEQRD9gepFEARB9Id5r5i3dtAHzvk+ddXhUocuEihdNZ7pqiwqedYviM93YnUVHShdw52Jmde6YJmBUeZBcnX42ZgMqlcD8BVuzqe+VK/abqleZYfPoF6LXEZRb/X3AKV/53C8VZRLa5Tv/SGrFd2W4y8AKt83lL6fGM4i3PaK/yg9ZZpJtxPC0QttpcaJH2lgzrk2iTVxC+Z/iCUEqZZSJAu6HYTFDce2sE0K7g58eJQbQmaSJX2nRKNLHaRcKSSjfcLZmZI8CPmU/BPDMFT5jflwPZLbUioIpV7DbtHbiH9pFlE/ygaIjpVoSJwV2tFAprhSAsOxelAkadG4SruyXaVEFSFZ0G3SYTvbBHcrkbcOD6eWUyrR21J0hW3IykTSscpJV75duZeo+R9SkgWXXFoQYGUrBPS7Vp7IDnS044EkP4hD/MQJfdaYeDRiQZKV3CZ3RNJJ1W2CuLVWl95ekIy15JDV171Jzn2rrLvKXOV9QrV3DgfjtjyIPXkEgVf2QezJqdJfuhG9i/vxteOBwrumrOJ7MowSfaisepUlWcmtrpGLb5Oof7AdZLVi9Rqw5zomnlQvOypctaEvg74/Q1fIdjWdBUmGSjdpRqAotq9eyJ5UOBQ8H8NqqUSyklt87RbZJkkCSjvOKsown0z76qXzibZTvexoW71AuFWqiHrpfHJolFIvxCG4G8Oec6pXDZKV3M6pXiAWVK+yZBZXL8cOpXpVwCxXbYzvmtQFhEm9DoAngFK3guqF0HColz5930GjD5EmpcTFx+LnjolktE9Bt5IcLr5N3KsTUsqs3sxSid529A9ZmUhmrnLSp1RIxDAM1T/3kpY/vHuQet9DAVKpY+dK8endMtULpDFuDzsnA03SmH9Y6whJRtdRWl9ljgWpJjOZ7xaMsvg2wVcH3B348Ewy49DRtIPngEKv1IZyJDl5ShAB5v2lqL5WojbbGkKyJqxsOjj2duKtgQvRNqheI8zwMmVO/71jZdPBsbcTbw1ciLYxl3r53uuYHznvzCzuv4sMI+ilWopjbyfeJrgWbYO/MU8QBEH0B6oXQRAE0R+oXgRBEER/qPk7h0q7jqUu9tOvpi0YCOlfLwkFZzfP+uYTlj5u1NsVDryamagHa7nuK6heNeM2qF6lSj/Hycx7T9KhZLvybIbqRVSCtVz3GEXVK/mdQf0JRXTUEDsppHBglOQXAyc3TA6jzBGe4xb90aj/aCDkFUN0rD7QQU/vGc2M5AcPrcwFacfVCzxKpMKb+ASrGlx0kumLjLVc9xjl1Cu6MPhJkWw0hdMd4u1IoORB7OYZvS3Rk+YVZWUiKS2BiV7SoeI27G/a0tbjYHJD8QmWQfioNE1rtSg+SaZTMkhJK+37hDrvHCbPKfBkBFfOGsV6fuEDQZ4F1QvpD7KSnOeoF9KukNH96A9J/ZFFVLrpCM8j5IRK8om2J/uTTNdkFKGldA3DMLd6haui1Ad+xlmjUL3Au+D+Kahew2j5cIbIbt89alrEcWf8yEBmaprmMETmmHmMkkwXZML+lK4fMaN6RW9LR4YuYPpxloxSSb3wwqV6jf1LUZLTDO8icKgXcsztOkSPs0w+pqomma7J4Ntz7zGXeoEHXNiY7OCIUkm9yvJcXL3ca+RbdCXEUuoFpmL3kO/R4tVLMl2ToXrBWOKqjQPh1QlyWoHh9Ch4OygbSsUneSpuo7cd/UNWJpJzqpeVCbK3rVk1EdDbkw4nje6qRkiSTBdkKFcwlrhiXmkPR42dJ8OBUZLtycpTHEaZKzwVn5M9kExveDt5mkskwSVITicaN5qQ0JXE0JoZJWJ0rOKhIJLTlDojxUkyXZPBy3K/0c8vRSln0+JojY8JOPmup9k+mkovyUhoisx+g+rlQsEnd4uD6tUImkovyUhoisx+ox/1GqOFAlJe3feF3vmvBk0tBMlIaIrMfqNP9SIIgiD2G1QvgiAIoj9QvQiCIIj+MIt68Z3iCZIJcWcsvLTdjfzLZKyjpIuMu4P701B3xtyQPr7V2xUOeAU6PjnuvTCIoqB6LYHu1GseD+uok8xvF80JSYeS7crzDLACfVftrqNCiEKoo17S03bfV/+Q/o7qr0cmDDruMHaFbH7TU9TxcMk5OJ1xBz1vukOJp9JfCjfpkIyIdNAd6lSjxJTljg7XeyLTiS6ZHhrJhtIu9RxTkjroIZRuehHmrCBYtERjKK1e0dKZ3Jg0Js8vpH80tEKsNplkIGmIvvmjB9PkwAqdSM7x6SQXUXIYhe9wDM9lyaGPak7/ZFxfuKRbaYmV0EqjVb0Un/jGlOg1e5IQzaCceklLru9MZI8pTsCiVzZ5VTJIo0nerJsqM7Tx7QAAIABJREFUR2ysx6uvc7R/DlVTozuQVWbKuk361x+S+oOVYF3fcCDOJNpnqZOEaAx1fmNeaj+A38mZ9Lee5uBxMBsZ/YmeQnsc1LGdJOdRn5nqlXSI9y+iXoNliZV2JFcSmYLqNVimozBXfJrSO0kRiKTwNHuSEO2h8msvq7rgx7rkP6SR3F31yJgCmdQCVzXFuUQvvIvwkTpHSerOS6kXPtAqJ7XVS1/ZqB9rTkC3kitd8KL9k9Kl9GzhJCEaQ+XPvdw15zi2kof4nGQcgUxqgWMG9co8+qle1uVeXL2SKzXp7EtjmycJ0QxqXnMInobJU/IAeL1fZNuXIiM15quXb1PpTkzPXnPyI3kG1at45icOTfmfX710eorAKJ4lqgXVC5yR3qfBk4RoADW/7xUt+miRhe2TxrKn+cxkooGkzRbe3XV2T1ZZCJ1DOOUoeamzfnIp/aVw1qPHSlXvj6+Xe7i+0MmKnXSwrnKStuLBComz1FkaPumzyElCLISlfymqqaJZkExTeWgW9bKU6ZnLtzi4BPsHqtcIVK/WMNsTZKpX7+AS7B+oXiMsQibnLcF9QP4bp2AUomtwBfcPS6sXQRAEQdhB9SIIgiD6A9WLIAiC6A/8Dykj9MJzNiQT4s5YeCG+G8rl4A4Ppv69F4z700R3xtyQPv7U2xUOBSuQWAhUrxF64TkbulOveTyso05yZjFzBpSvx+ntyvMMqlf/WPv/9xr3b5mnTqwSmTDouMPYFbL5TRcHjodLzsHpjDvoedMdSjyV/lK4SYdkRKSD7lCnGiWmLHd0uN4TmU50yfTQSDaUdqnnmBLRLdb+/72kPdYaT+nR2mSSgaQh0WNaCh09sEInknN8OslFlBxG4Tscw3NZcuijmtM/GdcXLulWWmIltNJoVS/FJ9WrZ6z9/3uZ9GxBnhKxecggjSZ5sx4KOWJjPV59naP9c6iaGt2BrDJT1m3Sv/6Q1B+sBOv6Er1hz/6/Vy88lyKjBEqq18RMkJxHfWaqV9Ih3r+Ieg2WJVbakVxJZAqq12CZjsJc8WlK7yRFxIqw9v/vlezQCE+J2DxkTIFMaoGrmuJcohfeRfhInaMkdeel1AsfaJWT2uqlr2zUjzUnoFvJlS54RM9Y+//30k/Vdngij9Yg4whkUgscM6hX5tFP9bIu9+LqlVwpomes/f976cXaDs8osdpkpMZ89fKdEboT8JkB3mgqnmj/eTI/cWjK//zqpdNTBEbxLFGleu031v7/vZBibYGnTm8eMtFA0nEZ3t11dk9WWQidQzjlKHmps34WK/2lcNbT30pV74+vl3u4vtDJip10sK5ykrbigVgRlv6lqF7qqSmeC5JpKg/Nol6WMj1z+YgVgeqFoSmeVK/WUPCltinQzMMJoiVQvTA0xXMRMnzjRUf+G6dgFIIghmFYXr0IgiAIwg6qF0EQBNEfqF4EQRBEf6j/G/MmhJcg53jToyCX2ILRHZ95NPsBRneXhCSXqeCMKhXk2PmcbguWa+aWLzV35SJ+vUOpQO043AO0ql7KNz/yEd0w0S/QINF915s1W6xUr5xY+c7ndLuH6lUKZR3ykigXSv/OYViL0usS5SuKk4dM3gZ4p0XjKt3AjYF0i84ojOtLWpJJs8QU/zrhMHq0HhwHBFiceO1JIeZxOwiZCcdGh0TXBd+kOs8o7SgrcO/rNYAEGoQUKVl11H80UHQsMnCfUOE35pPpRtqji414U3ZdWLgTJIsD2ZBRtyDzaH9k+tLe0Am3Rkzf5A7CUZ/gbsdjRc8+R4h53CYd6kss7RqwGJKb0VFj0Rkl25FASs6VQkXqX3eI0AOLYdWo8x9SkjU3DYWpV3KU3j8J97m2awRPHL0E3UmT+vdCTOlvIuxICPKotTitIeZ3i6yy7iR5qlo3Y6kaS7aXOrLyXSGdqV4x1Fevg9gTrvDRcKDiXBoVvYvDNNC6r6SBYWaSdeybfnfETIStZ7TUnhmrRoh6bnWNRKYc3bnKlk+iVI2tVb2G1DOYfcK8r72kIbh66aPCdtNGAmtCd5WsM/chLt1ObpKQRpvErDvWrV7JFXTHqhGinlt8R0QHIos+4ZbcjKVqrKx66apJ9VoIC6mXqbbclWoFspmTh771jA7b3RsyvGs67BYnlpPJHBWMwherRoh6budULxClaqyseuk851SvUnleBRq4aiPaP7kxlOdBldTLqsTRbvrBurvhnr7UX0E7xIpnUueDwBQrJ8T8bqWdgmgSrl5W5jk1Zmq3Hk0hz+jtiSulm+JQGUv1GqGBK+aH1NpEvYHtJuQMjM4RCREO3M3CmjQpBIIWiJn6KwQkPm4gk83HDG7BKNGl189iZMuDbKPhFOamdqQ4HSmKTlmaS9RnlE8YJdpnX7HGX4rqfTmb5d8sMWJ+VCqG1mosh888Y1vL2IxYhXoVefHRDprl3ywxYn6sVb0KHiZUr8pYhXoNeW9WtIZmp9AsMWJOVN1lLdRYqcNkKeXbG6xFvQiCIIh9AtWLIAiC6A9UL4IgCKI/lL5i3gHrqCIXQOuX5EbbFQ57f+nqHEDSq1zfXAnS1cxVY5V1mLzYvVR5F89Vcrl7z1gYq5Srsljo6KvzWxsmzDxzSYeS7cqWoHrNAKpXcUjfhZrc7Ve9imPmjE2cUL2eRgn1Cp996M9Hkj2fYpHyg4cObw9wISo9h1RNS4g+gwt9gq8Rpf49kgmJ5dSYNDuFjHWmUogkMYVPMlZyVDLbet2G4SQn7lxlpkXKuS+QMsfJFKwZK1X2RdIVkgHn7iDpcwujzi9FRR9Ctv2UAtY/WUxKI1iIg7rG0l6SIKVisKcr2b8vMlZiVp7WCrGWhzLc51YKkfQ27jM+XybtOJlKucpJC96+eMZKlX1+ukIaUpaKkDS5NWJe9ULaJbdJ//pDUn/kXFO66QAX0jrNaHuyf+NkfMTAuDgxsFE/kfHhUjfdiXWLgXAML5srd125133mjGWWfebRKqlaVZKgWxfaVq9h9CQo6X/cORwl+fSda6aVQGZqmuYwROZY5HxcioyvMx53snB6hUiN0YHSiVA2gUospB2EY3hmrkrVFbLupoEgfMPdZZ95tEq1WpUk6MGFltQLPFPwQwGBqY4PVMGL9o9uyEw+0dtJ/o2TST6KcLCeYlJ0sDHpuVQCQW9Ke1ROJP8KB32IPtCkXr71tQaaOWOZZV9KvXa3peUrSBJ060JL6qVjcfUyHYWOCgD5+Cq1FzIKsSI11pp6mTZFTtoRtKNexdsXz9iyZS+5CjsUJ2lya0Tb6hV1qwxEislaGSYCenvS4aRRn/6kjyO9zZLBiYVxTTWDVwh+PhZPoO8sdhwZmerly1VOWvD2ZTNWsOx9CZfG6qrjJhntUwHV/rfyzpQ+k85xFoKfcYjw/EqGjkaMjlU8FERymlJn07ncIxmJlRJXLwBllaVYykDlpMhJoD4LJb2SNxBIcqQhST8h/8y0JNvbzJjP/4ClC0xjeLcsyVnAX4pqFTMWQRpNkekRiySw/VVrjWFrfKqi/8lSvVpFU7XVFJkeMU8C6z25roTFGXaXsYLof7JUr1bRVG01RaZHzJbA2m9klUULJPvKWBGsZbJUL4IgCKI/UL0IgiCI/kD1IgiCIPpDZfXSL0omfBi/U296y545nyCZEHfGCl49HL3o3O3B1L/3gnF/wOPOmBvJS96j7QoHvAJ9X5NoAFSvnjH/HlsZulOveTyso05yZjFzBiQdSrYrzzPACvRdddlGhdRRr8m36sYpDr/U5shX+EzB+j0+qX9fZEwdGuE8J5kwaLQao6PCzW96ijoeLjkHpxPdNdJ8FYcST6W/FG7SIRkR6aA71KlGiSnLHR2u90SmE10yPTSSDaVd6jmmJHXQQyjd9CLMWUGwaH9EafUCVyjsltxguk9k+yH9uyMD8pRorD6ByUDSEH3zRw+myYEVOpGc49NJLqLkMArf4TiZZmbmw/ac/sm4vnBJt9ISK6GVRnxBpQKLPqRvTIlesydJSfWKRkIKSPGQ9Ik7n7T3TkaPrnfewwQijfqWAylJyBEb6/Hq6xztn0PV1OgOZJWZsm6T/vWHpP5gJVjXNxyIM4n2Wfb0q/U7h9H2zFlN+iiKHb17EHtq3CkZU4vOYTbOjSRQCZRUr4mZIDmP+kSOQiSf4Omm9Lee8r7Mg4GQXElkHOEUmCoWrJzxo6b0TlIEQncldYhSWur06/K1V9QJsuHB/l2QkXpKnZM1se4EmgKZ1AI8m3TnEr3wLsJH6hwlqTu3nvKZmcfbkYjI4ZNs11c26seaE9Ct5GpSV8gSgIdJsyfJj1joc6/wIb0K3Slz7Lq+yIA8m+I8JxlHIJNa4JhBvTKPfqqXdbkXV6/kSk06+9LY5klS95rDkEqUVpFCkVIMBu2UDNgBPA3Xl0CpMV+9fGKmOwH3M95oOvqj/efJ/MShKf/zq5dOTxEYxbNyTupjEQJ6u/7QpE9jJ0n973uFpRlNhAkTt8MouQeBXEeDFjmMFidjlYoWOEfpzUMmGkjabOHdXWf3ZJWF0DlEd407P3h/KZz16LFS1fvj6+Ueri90smInHayrnKSteLBC4ix1loZP+sxykqzll6LcB0oNNEUGRFOcFyTTVB6aRb0sZXrm8i2OGZeA6lUBTZEB0RRnqldryHiCnBVo5uFEPqheZjRVtU2RAdEU50XI5LwluA8A31zKj0J0DaoXQRAEQSigehEEQRD9gepFEARB9IdZ1KuX97LDi5KjHYpEyfSf7Ommilw8nQOrH/dMW6662tySOZlzNcOLpEt5tsL9oV3xorV6w79CMMSmGb1bKcPRiHVA9RqB6jUESSi+drM5bLnqFlev2oGiHUzl3VThtXMRbPJrUsjzzhnUaxZU/q2N8Lbjq21If327SptB8Txe+/DJo2ORTP7DsdEh0XmFrpTOCs/x3fCG6clg1L9pxScdknwmrpDysJZf9K51UqWIDUJypHbTaiZ5SsQmhYo4HFOKNk78Jwci3JJR9KpO+sFDR51H7ybblRqTigEHviuVgdmo/DuHg5CjyULqnZH+0dBSo4NnNDS4EjpnhKpC0lqaysmiD3cvWUjPuuJhh/AsSDosRQahgU+qIDGJld6OBFJK3UoMR+jQuhEUh9bjRXEO9rduE4Sq3j7ZyGHnGqdZMrqpBlKo/BvzQ6oC8CMP7K8k18HTGg551OQfaTTtamv1uE/k5FJa3boHKsj0mVwFKZz7zAId1stqDoFM9dL9l1IvpF0hpvvRH0r6D+XB2i0ZK+c0G1LrUlS6hln/v9fw4/zxtTwQXhngcR1HqqPUcNVx+1fyllSviZlgOu+QQNbhK1CvZBnjxECHi6iXvnyKE91z8i5Y1ci+89WS6Vhz7MdxT9MCTVYHhPs0i9JzFwCAGf+/V7Tdehwk10wvI4QnWIWKN1+sqH9pbHQgkrEJN1xsfDvcfc4mO2SeOEV8ImVjWpQkMdBhJfVSVhM53VagXvp+QY7szBPcoV6mqss5zaRY4elUCDP+f69Jt2iHzOMjmVyEJ1h54J7BYylsww756gUiU70Uh+DwrtXLza0UsbLqpfBcSr18Ka1RS1L/pdTLlKIip5kUqxv1+mFojK60vZPb/qDEM/dMnjoNBMnKlgoIPxZNByiIeued1W2pkihCJkpJ72+qn5x9YWoHTx+reiHnuI7QoZ6QpdTLysq6H5M1lgyUeUjqQ6y7sihqft8rmtBoFYbtk0Z3UnxH2GQZQho5cPiP5k3az+HdXeciZZoZyDpcmjVy4iCJdZMJ+zs468TwfWFtN61mkuekvykVEqLEwr0T7QM6xNdXr2rJzzhEdMsroXX/ih9pIo69D8K0K4ti6V+KqpfTfcO+ZXId8wWP2sWxOB+cwOJUiblA9VoLVp/JWZ7NzY1m1au1bFO9iABUr/5R9W2BpqC8VbIytDDBprLdAgeiMSytXgRBEARhB9WLIAiC6A9UL4IgCKI/LK1eyDWjNd7yBi/bzXHeI5S0VL3itqwr99XYoH8HwgvHc7zpUZDrpx3RMz8G04tqti0zf0SiGqheFdDvxlhEvQoCWdbw/J1TvcCv+ORESX7Xx1H8+ZcgNlJUXZQxgaHor/SOn1RG94z+rb3o2OSo0P8A1Oikm4n/xEl4t7YTZVKZzpPqBa6sxEcPOjHdeRTJ1ZfOd2WUVFfJWetztHrT5yVNBJkvnljpbnJIdKYhh9AtOPFkdGtEogeUU6/JcbO7PbmhtEsnL34cS2SiZ+JkOM4fmRQ+EasTCQUZRmMhk5LaTRnA+SeXVYJ+mks9o4WBE446xL05qjo6i2i3yeImoXcOvSEzirqVKhaP7o5INI8K/yEFOXPdyoT40YfofqTbyaMNIVPEiYSqzvEhpskmPWcuqwTcT2YCQfVKjtL7J+E79x0OJQ+Z6g4yjD6aGZFoGPOql/RsUeocbU/6iQ7RgfCfRMQJF3ciobZz/W40enig4CQnbvGzNYki6qUQU+rTvTtMtPVZZHZOiq7SXkRLdIHU26leK8KM6hW9nS8GybHI8QeqLx5Ucl7WiYQazpFVkFzhGQCJIcuqPFpEvZAh+FlZo6qjzvVuma6S2Ubyub2trKk7uiMi0TDmUi+8hvL7hHeToHrhPh2uiqtXJuqpV7K/e3coQZNANMlRA6C3IuoFMtSjmyISzWMJ9ToQ3huxqpfip7h6WSdVz4lpCqWch318K6s3hjQqiZlPvaTZDZZs5OyOSuqFq4IjqLKCSD59oQdjbn0hiKUx7zuHu+qZHKN6oR8cTMsuOkRxlYSVf3JSSH+3E2UWVZ1Ld5EVURonZKTlLni+mFwlZ4cnPPSAR7HSnlDKhLQ6jtB6fqRROZg/IjELlv62ciWsoBarTmEF+dlDcNUIYoS1qNf6nklRvYj1VTVBlMNa1Guo8xbTgojOInwDxzffdaRoH7CyqiaIcliRehEEQRB7A6oXQRAE0R+oXgRBEER/WFq9pAuIpT6lkHkJMuK8ZeiptvLP/GxG+oRPeTQTyWkWvzp/hmtwkK1kclgPeE7mPBPquSXqgOpVAe3vgYLqlX9dnK5eNUD1QhzWA9WLKAH+fy87/4mT8G5tJ8qkMp1H05IMqtxNDpncDldQWlCTKkTnKNVVGN2EZKyw2KqGSG7DSftQKOcmwhIxvVCTAx3EJj6TTHKY48Qqkekc/P9edv7IpPCJWJ1IKMhQWRQ9bpJndLOFA5WVig5UguIRpSH4hnfMbp4Qvm3ozrmPMBIIP1iSJK3EHCkFC0wnVptMz+D/91Jp6BxAwmWdSKjtPLmUuivJA540va5wSTDVXtJbfqwZQlgr051zN2Gwj0m9JBo+YnidlyU2D5k+wf/vpdKY3NafwiBkijiRUNW51A1xhShfpnopnZGI1uPA2hkhXy9EJfVS2h0rPlj29fjGxPS44CzwrWRlbiU2J5newP/vBXM2BZWcl3UiobhzMHWKq6gH6+pvb0v5jO5hMGJyFkoGMmPNECKnHkw5dxOWHkLUS4ejMPSICluwv4nYPGT6BP+/lxqC6oXvqKSr0FsR9TKdoQ71SmYgM9YMIYqrVzuE3aWrEPMxAdutxGqT6Rn8/16pEHjjuL2eE9MUMp0jaXRsDOlAHN8GNx5+hiYjItGLx6oXIlkPUnt0rKkUfYSjBJITAc/rfGLgpi5LrDaZzsH/7+Xin5wU0t/tRJlFPedIXJOrsLNCVRnljgjWVfFYpc6OZAi9HnCGMxCWCEgTiW5MN0+9FHUmOnMlhIleO2RawtLfVq6EFSzPCqZArAMsxaGxJDRFZjmsRb3W9+RiBVMg1gGW4tBYEpoisxzWol5DiTcQmkJ0FuM5rmy+RINgde3QVB6aIrMcVqReBEEQxN6A6kUQBEH0B6oXQRAE0R9qqlfyzdnMK1yLvPkrXYbr82Dq3/ub1+4PRdwZcyN5mXi0XeGAV2CRy7iLX20/iRK9ZBzpJvnEa2PmXdDspmucmEJvOeZUr9Lf7JkhYgvI/P7KnJB0KNmuPM+YU73yn2Alo4DibZ1v1fz40Ozua5zYytVr8oRLvyguzIjpCrrxcOVpY9TnblTIMMonOkdwi+r9pXCTDsmISAfdoU41SkxZ7uhwvScyneiS6aGRbCjtbvVKFpU1+T5vCkNlItGB0cpUHEq3wSIJJ4I4sfJxMMkk0ykxZdON+4P+y6Hmb23gm185R6QDK3QiOY/6BJmDJKNI9pfCIVRx/gMwd7B/Mq4vXNKttMRKaKURX1CpwJCHdret9ZMsD9xb9LhRtpI0i2g3qTYUhtJETHsQP45Dhj7nvpNEL/J1EIvG0helKCqoV7RRzz5yBilwb29wrB4UZKvM2kHV1Jh/gOohKrlN+tcfkvqDlWBd3yQlsMj18sBH6f2TwKs6qnygHOLtemeEQEHnYP+oGKyAmMN/HVR753AwqtdB7IkhCMl51GemeiUd4v2LqNeQyjwYCMmVRKageg2W6SjMFZ+m9E5ShMCa5PDRcKDiHC9vE0wDQ4bREy16F1ncpJNkY3Ssybk71cmy74KYdRWU9nKocNWGnsRoFpKHjn426c4leuFd33LuQutlp5xKjo2t0yslJ8mEZ4bTVxY8vq0wpXdSV0g4a5IHYYLJ6SOlG021vpWSbCfddEpFitxxLocPWQ9xd6oVGv0SM+1BpMBKoG31wjGDemUe/VQv63Ivrl7JldL9g2PxOlG8uWtGAlJsyYM4p0jcnSWGbpFwMNeP7x6JgXtwLt3aYparNsZ3fU8WEOhOwKXFG02nUrS/1XNSUxGHOUdhMm4lt8pAd4qQsfnqhawmXiemUZN2K5LCgLSD0zftQeTcDwOBuz5n45uKZB3E9Lj1UflzL73aop0L7reoz+gGCxcsSibaWT+Llf5SOGsVWqnq/fH1cg/XF1ryMw4x2TOmVU7SVjyASBaVqa70g0Mv3YK7CR8YLlDo0FSTk1HJ5Y6ykngmnQ+pBQI5dE1M2nRu/yUw7y9FLTfPnlAvS5meuXzdYWVLpjzjqed8cTRLbGlQvRpAkedKjkAzDydmwGy1tAioXsQIc6mX6Y2XPYTyFlbZKMTqMU8tLYL93B3NElsa/I15giAIoj9QvQiCIIj+QPUiCIIg+sMs6jXDhZXR64bzHdYDnpOqn1RLbhXnBeOyMCT/zRZG44iSlC4lLxwZdX4Qg9tbcexCL8gBBNVLdVgPjR9SVC/dYT00XhiNQ1evupEN6oV0WEo82hetHeqol/JVu/HmzPm+mymE9M075Rt5ErF6hCVi0kQmt/UOpYiN+9detRlCsDBMxCY+k0xymINASE4qttzajQ/6ZdXLITkT8ruXgJPXXk29LpygtHpFy3dyQ+qGbypHCOnM1cdKhV6JMBIoHCsNTJJ0EAvJVF21GUKwMPKJOVIKFpgCx3KXW7vw7b7FX3tF34FEeoYyptNYo3pJC49syKST/BCmQwr0WZYw2Md0SEk0imQy6S0/1gwhWBj5xJKB8onlkNQzY4wuiUSpz718r+eS9JRHJRmOfgDWjnQNdf875SBXiZ4CZIdYQ1Q6pJR2K+Fdy85AYuMhysZLnozWTCrDTZ1ZGIjDRgpj7Fbp4GOux8U7Z6qX3K4Lg/SQqWcRqTDp696r1yA8YbEeUuqznqwQ7kNqd1vaS6UISw+ZtiJIo0gmdW9FYs0QgoVhIqZHVNiC/RUaOElkKb1rl3ztNXlFFb7ASr42Cl+WJX0m6SmPJtVrd7sp6Rqqf+6FH1J6veaHKH5ItUPYus9LEUv6z481QwgWhomYjwnYniQGknSrFxw9lIEir72S0mKiBPakek2GCpURvR3eRYCEiEYEK1sv9EqEowSSEwHPiBrErGBh+AhHCbRTGEhKlcqpXVGIarqi+05z8B08UxQHE0mlpNeIrUnXUPf7XtHnNdFqcyMZYtwSdsMZzkBYIiBNJNyi4YyqEnODhWEiLBFYpDCUiHjqiudQJ1kv7lPOUG/K24OZnt2I0thv9VoT2ls5ogmwMAYmgVgGVC8M3J9EFCyMgUkglgHVK4Wcd12IFYOFsQPzQCwBqhdBEATRH6heBEEQRH+gehEEQRD9oaJ6zXOh5zyB8tERVQlu8tEvlBRPheQ2euFvke+WloJ+pTLORPkKqsObMqpsThDaNVah1Fxw/l1v/wZB9ZoJHVGVkK9epuPVFyXUqh7VK6rBVK+yoHr1jmLqNf6+264lfDR6uCCNcYpBTegOQ3qTdoV/jv+QqqOO9WlGp2OdfjToZAqKTzCWw9sAZCzqNhyoe5PI4zz1RoR5dFTIauI/ml6Fg5QHyaE+ahJRCu2jnRwV+pdIKhmox1/PG+FGGfUK1yl6Q2lPNk4w7oA7DH1O2qMe9Edz/IPVHHWFhLPSC+NGOSALGm23MpSiI8UgTU05R5oqY6V4rBmLzldPlx5Cyl60uorQVuZSqmBm4B/NG+FGefXSGwe5GvRRCJCxYC2Gf0HCeufocKVn9FETDakb0h+cGh5LP099UZLABzZVxmGuTEyS2dNHOZIvRS9CW98jbs5S/+L8iRqYT73C5z7jxmhPnXqctDA2jO5Qr6j/gwBR/0naYKNCQxmLT193EnpTli+MpRN2MESADwSToNRAtKeb8KT8TBlLZk8fpS+xTjvJxEE7yr9swVTlT9TATOqlLDDSWGMv6fsk/KtwSxLQeSo9k5NFtq5p+kpjcsrJWEhJIAtkKgb8BGmkjKOliDAxHaNh5+TsdJgW10obKe/MgqnKn6iBOdTLcVAqjSCQmlbaw7+g/7CDwhCcIH7S5bcrjdYph/2th06SIYJS6jVbGSfVC8lYtI9+ENdWLzdtR5/w7rL8iRqY+6qN8UFsfSKTBOIQqXX3My+lXaEKIpm3UtOPNiJjk/3dDCezM8GnXq2VsZvJ+K5bvZAp1KOtOy9VMFX5EzUw9xXzSrveCCLpMHkEK7eT/nPOLBOkcEWmnxw7CFNOxsopD3c+TQO3fwbsAAAAa0lEQVT1dUR46o1WwiYmSrqifaSgk57gFOakXaNgqvInaoC/FLUSrH6frH6Cy2J96V3fjIgJqF4rwfr2Kp/GzokVpJcFs2+geq0Eq9yr1jevCAfWlF4WzF6B6kUQBEH0B6oXQRAE0R8UGfr/LrVquU3+9FYAAAAASUVORK5CYII=" alt="" />

表达式为

<div class="quizPutTag">([\s\S]*?(<div[^>]*>((?1)|[\s\S])*<\/div>)*[\s\S]*?)*<\/div>

php正则表达式匹配html标签的更多相关文章

  1. 正则表达式匹配html标签里面的内容

    假如html标签里面有一句:String a = "<style type=\"text/css\"> div \n" + "{ marg ...

  2. 正则表达式匹配a标签或div标签

    这里以a标签为例 a标签的href var a='<P><A href=\'~abc/ccg/ab.jpg\' width="3">文字</A> ...

  3. 正则表达式匹配a标签的href

    JS代码: <html> <head> <script language="javascript"> var a='<P><A ...

  4. Java/Js下使用正则表达式匹配嵌套Html标签

    转自:http://www.jb51.net/article/24422.htm 以前写过一篇文章讲解如何使用正则表达式完美解决Html嵌套标签的匹配问题(使用正则表达式匹配嵌套Html标签),但是里 ...

  5. 使用正则表达式匹配HTML 下各种<title>标签

    http://www.oschina.net/question/195686_46313 <title>标题</title> <title>标题</title ...

  6. 匹配img标签的正则表达式

    $preg = '/<img.*?src=[\"|\']?(.*?)[\"|\']?\s.*?>/i';//匹配img标签的正则表达式 preg_match_all($ ...

  7. PHP 正则表达式匹配 preg_match 与 preg_match_all 函数

    --http://www.5idev.com/p-php_preg_match.shtml 正则表达式在 PHP 中的应用 在 PHP 应用中,正则表达式主要用于: 正则匹配:根据正则表达式匹配相应的 ...

  8. PHP 正则表达式匹配函数 preg_match 与 preg_match_all

    preg_match() preg_match() 函数用于进行正则表达式匹配,成功返回 1 ,否则返回 0 . 语法: 1 int preg_match( string pattern, strin ...

  9. C#正则表达式匹配HTML中的图片路径

    最近的项目中有个关于网页取图的功能需要我自己开发,那就是用正则表达式来匹配图片标签. 一般来说一个 HTML 文档有很多标签,比如“<html>”.“<body>”.“< ...

随机推荐

  1. Python: PS 滤镜--万花筒效果

    本文用 Python 实现 PS 的一种滤镜效果,称为万花筒.也是对图像做各种扭曲变换,最后图像呈现的效果就像从万花筒中看到的一样: 图像的效果可以参考之前的博客: http://blog.csdn. ...

  2. 【PA 2014】Kuglarz

    [题目链接]            点击打开链接 [算法]            sum[i]表示前i个杯子中,杯子底下藏有球的杯子总数            那么,知道[i,j]这段区间中,藏有球的 ...

  3. 洛谷P1719 最大加权矩形

    题目描述 为了更好的备战NOIP2013,电脑组的几个女孩子LYQ,ZSC,ZHQ认为,我们不光需要机房,我们还需要运动,于是就决定找校长申请一块电脑组的课余运动场地,听说她们都是电脑组的高手,校长没 ...

  4. bzoj2132

    最小割 套路最小割... 盗一波图 来自GXZ神犇 对于这样的图,我们要么割ai,bj,要么割bi,aj,要么割ai,ci+cj,aj,要么割bi,ci+cj,bj,然后这样建图跑最小割就行了 但这不 ...

  5. C++中的常量(一) const限定符

    最近在重新看<<C++ Primer>>,第一遍的时候const和constexpr看得并不太懂,这次又有了些更新的理解,当然可能仍然有许多不对的地方... 首先,const限 ...

  6. golang——database/sql包学习

    1.database/sql包 sql包提供了保证SQL或类SQL数据库的泛用接口. 使用sql包时必须注入(至少)一个数据库驱动. (1)获取mysql driver:go get -v githu ...

  7. HTML基础2——综合案例1——如何用iis配置网站

      1.打开iis 如果机子上面没有iis,可以先装一个,不同的系统可能安装步骤不一样,至于iis的安装方法,大家可以去百度找找.   2.准备网站源程序 既然要配置网站,肯定要先准备好网站源程序,网 ...

  8. DHTML_____window对象的事件

    <html> <head> <meta charset="utf-8"> <title>window对象事件</title&g ...

  9. C#模拟百度登录并到指定网站评论回帖(五)

    前面的四篇已经说完了全部的模拟百度登录,接下来就是到指定的网站去发表评论,当然你也可能是获取其他信息,其实这些套路都是万变不离其宗的,弄懂之后觉得像这种请求-响应获取信息的功能实在很简单(想起当初走的 ...

  10. ValueError: multi-byte encodings are not supported

    pyton解析xml时,报错 是因为编码的问题,把xml的头 <?xml version="1.0" encoding="gb2312"?> 改成 ...