先说一下题意

$s$ 个子系统还中有 $n$ 种 $\text{bug}$,每天可以随机选择一种 $\text{bug}$,问选出 $n$ 种 $\text{bug}$ 在 $s$ 种子系统中的期望天数。

解题思路

不妨设 $dp[i][j]$ 表示在选择 $i$ 种 $\text{bug}$,$j$ 种子系统的期望天数。

那么新选择的 $\text{bug}$ 就会出现一下四种情况

  • 新发现的 $\text{bug}$ 在已经发现的 $i$ 种 $\text{bug}$中,已经发现的 $j$ 个子系统中,概率是 $p1=\frac{i}{n} \times \frac{j}{s}$
  • 新发现的 $\text{bug}$ 在已经发现的 $i$ 种 $\text{bug}$中,但却在新的子系统里,概率是 $p2=\frac{i}{n} \times \frac{s-j}{s}$
  • 新发现的 $\text{bug}$ 是新的 $\text{bug}$,但却在已经发现的子系统里,概率是 $p3=\frac{n-i}{n} \times \frac{j}{s}$
  • 新发现的 $\text{bug}$ 是新的 $\text{bug}$,也在新的子系统中,概率是 $p4=\frac{n-i}{n} \times \frac{s-j}{s}$

稍微推一下就能够得到状态转移方程。

附上代码

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
int n, s;
double dp[][], p1, p2, p3, p4;
int main() {
while (scanf("%d%d", &n, &s) == ) {
memset(dp, , sizeof(dp));
for(int i=n; i>=; i--) {
for(int j=s; j>=; j--) {
if(i == n && j == s) continue;
p1 = 1.0 * i/n * j/s;
p2 = 1.0 * i/n * (s-j)/s;
p3 = 1.0 * (n-i)/n * j/s;
p4 = 1.0 * (n-i)/n * (s-j)/s;
dp[i][j] = (dp[i][j+]*p2 + dp[i+][j]*p3 + dp[i+][j+]*p4 + 1.0) / (1.0-p1);
}
}
printf("%.4lf\n", dp[][]);
}
}

「 poj 2096 」 Collecting Bugs的更多相关文章

  1. 【POJ 2096】 Collecting Bugs

    [题目链接] http://poj.org/problem?id=2096 [算法] 概率DP [代码] #include <algorithm> #include <bitset& ...

  2. 【POJ 2096】Collecting Bugs 概率期望dp

    题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...

  3. 「专题训练」Collecting Bugs(POJ-2096)

    题意与分析 题意大致是这样的:给定一个\(n\times s\)的矩阵,每次可以随机的在这个矩阵内给一个格子染色(染过色的仍然可能被选中),问每一行和每一列都有格子被染色的次数的期望. 这题如果从概率 ...

  4. 「POJ 3666」Making the Grade 题解(两种做法)

    0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...

  5. 【POJ】【2096】Collecting Bugs

    概率DP/数学期望 kuangbin总结中的第二题 大概题意:有n个子系统,s种bug,每次找出一个bug,这个bug属于第 i 个子系统的概率为1/n,是第 j 种bug的概率是1/s,问在每个子系 ...

  6. 「POJ Challenge」生日礼物

    Tag 堆,贪心,链表 Solution 把连续的符号相同的数缩成一个数,去掉两端的非正数,得到一个正负交替的序列,把该序列中所有数的绝对值扔进堆中,用所有正数的和减去一个最小值,这个最小值的求法与「 ...

  7. 「POJ 3268」Silver Cow Party

    更好的阅读体验 Portal Portal1: POJ Portal2: Luogu Description One cow from each of N farms \((1 \le N \le 1 ...

  8. 「POJ 1135」Domino Effect(dfs)

    BUPT 2017 Summer Training (for 16) #3G 题意 摆好的多米诺牌中有n个关键牌,两个关键牌之间有边代表它们之间有一排多米诺牌.从1号关键牌开始推倒,问最后倒下的牌在哪 ...

  9. 「POJ - 1003」Hangover

    BUPT 2017 summer training (16) #2C 题意 n个卡片可以支撑住的长度是1/2+1/3+1/4+..+1/(n+1)个卡片长度.现在给出需要达到总长度,求最小的n. 题解 ...

随机推荐

  1. HTML DOM createTextNode() 方法

    实例 创建一个文本节点: var btn=document.createTextNode("Hello World"); 输出结果: Hello World 尝试一下 » HTML ...

  2. 蓝桥 ADV-230 算法提高 12-1三角形 【数学公式】

      算法提高 12-1三角形   时间限制:1.0s   内存限制:256.0MB      问题描述 为二维空间中的点设计一个结构体,在此基础上为三角形设计一个结构体.分别设计独立的函数计算三角形的 ...

  3. Interval 计时器

    语法: setInterval(代码,交互时间); 在执行时,从载入页面后每隔指定的时间执行代码. clearInterval( setInterval() 返回的 ID 值 ): 取消计时器 < ...

  4. poj 3621(最优比率环)

    Sightseeing Cows Farmer John has decided to reward his cows for their hard work by taking them on a ...

  5. linux下的C语言开发(定时器)

    定时器是我们需要经常处理的一种资源.那Linux下面的定时器又是怎么一回事呢?其实,在linux里面有一种进程中信息传递的方法,那就是信号.这里的定时器就相当于系统每隔一段时间给进程发一个定时信号,我 ...

  6. MySQL 操作语句

    解释:|:或;{}:必选;[]:可选 创建数据库并指定字符编码: CREATE {DATABASE|SCHEMA} [IF NOT EXISTS] db_name [DEFAULT] CHARACTE ...

  7. mvn 配置

    <!-- 阿里云仓库1 -->    <mirror>        <id>alimaven-1</id>        <name>al ...

  8. 讯搜问题排查xunsearch

    mysql导入数据不成功,开始重建索引后提示 [XSException] ../local/xunsearch/sdk/php/lib/XS.php(1898): DB- 可打印的版本 开始重建索引 ...

  9. Spring boot 分环境部署

    一.如果配置文件为:application.properties时 1.application.properties用于填些公共文件 以下为不同环境的配置文件需要单独配置 application-de ...

  10. kali中的APT软件包处理工具(apt-get)、Debian软件包管理器(dpkg)、源代码压缩和Nessus安装实用指南

    写在前面的话 能看懂此博客的朋友,深信你有一定的Kali基础了. 使用APT软件包处理工具(apt-get).Debian软件包管理器(dpkg)来维护.升级和安装自定义及第三方应用程序 APT软件包 ...