传送门

Solution

裸数位dp,空间存不下只能枚举数字具体是什么

注意memset最好为-1,不要是0,有很多状态答案为0

Code

//By Menteur_Hxy
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Re register
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin)),p1==p2?EOF:*p1++)
using namespace std;
typedef long long LL; char buf[1<<21],*p1,*p2;
inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} LL MOD;
LL dp[20][200][200],bit[20]; LL dfs(LL pos,LL sum,LL mod,LL lim) {
if(!pos) return (sum==MOD&&mod==0);
if(!lim&&~dp[pos][sum][mod]) return dp[pos][sum][mod];
int up=lim?bit[pos]:9; LL res=0;
Fo(i,0,up) res+=dfs(pos-1,sum+i,(mod*10+i)%MOD,lim&&i==bit[pos]);
if(!lim) dp[pos][sum][mod]=res;
return res;
} LL sol(LL x) {
LL len=0,res=0;
while(x) bit[++len]=x%10,x/=10;
for(MOD=1;MOD<=len*9;MOD++) {
memset(dp,-1,sizeof(dp));
res+=dfs(len,0,0,1);
}
return res;
} int main() {
LL l=read(),r=read();
printf("%lld",sol(r)-sol(l-1));
return 0;
}

[luogu4127 AHOI2009] 同类分布 (数位dp)的更多相关文章

  1. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  2. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  3. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  4. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  5. BZOJ 1799 同类分布(数位DP)

    给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...

  6. bzoj1799同类分布——数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...

  7. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  8. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  9. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

随机推荐

  1. 【转】pthread_cond_signal 虚假唤醒问题

    引用:http://blog.csdn.net/leeds1993/article/details/52738845 什么是虚假唤醒? 举个例子,我们现在有一个生产者-消费者队列和三个线程. I.1号 ...

  2. 编译android的一些坑

    1 降级gcc g++到4.4 2 参考:http://source.android.com/source/initializing.html来配置环境 3 使用jdk1.6 包括 java java ...

  3. Android 通过USB查看kernel调试信息【转】

    本文转载自:http://blog.csdn.net/lindonghai/article/details/51683644 前提:电脑已安装adb并可正常使用. 在调试Android驱动时,需要查看 ...

  4. ReSharper warns: “Static field in generic type”

    http://stackoverflow.com/questions/9647641/resharper-warns-static-field-in-generic-type It's fine to ...

  5. 查看mysql数据库的所有配置信息和服务器的各种状态

    查看MySQL服务器配置信息 mysql> show variables; 2, 查看MySQL服务器运行的各种状态值 mysql> show global status;

  6. oracle从子表取出前几行数据:

    取排序后的前几行,应该用: select * from(select * from test order by stamp desc) where rownum<= 6  (表示排序后取前几行) ...

  7. Linux查找和替换目录下所有文件中字符串(转载)

    转自:http://rubyer.me/blog/1613/ 单个文件中查找替换很简单,就不说了.文件夹下所有文件中字符串的查找替换就要记忆了,最近部署几十台linux服务器,记录下总结. 查找文件夹 ...

  8. P4244 [SHOI2008]仙人掌图 II

    传送门 仙人掌直径,以前好像模拟赛的时候做到过一道基环树的直径,打了个很麻烦的然而还错了--今天才发现那就是这个的弱化版啊-- 如果是树的话用普通的dp即可,记\(f[u]\)表示\(u\)往下最长能 ...

  9. (快速幂)51NOD 1046 A^B Mod C

    给出3个正整数A B C,求A^B Mod C.   例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...

  10. 题解报告:hdu 1010 Tempter of the Bone

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1010 Problem Description The doggie found a bone in a ...