传送门

Solution

裸数位dp,空间存不下只能枚举数字具体是什么

注意memset最好为-1,不要是0,有很多状态答案为0

Code

//By Menteur_Hxy
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define Re register
#define Fo(i,a,b) for(Re int i=(a),_=(b);i<=_;i++)
#define Ro(i,a,b) for(Re int i=(b),_=(a);i>=_;i--)
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin)),p1==p2?EOF:*p1++)
using namespace std;
typedef long long LL; char buf[1<<21],*p1,*p2;
inline LL read() {
LL x=0,f=1;char c=getchar();
while(!isdigit(c)) {if(c=='-')f=-f;c=getchar();}
while(isdigit(c)) x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} LL MOD;
LL dp[20][200][200],bit[20]; LL dfs(LL pos,LL sum,LL mod,LL lim) {
if(!pos) return (sum==MOD&&mod==0);
if(!lim&&~dp[pos][sum][mod]) return dp[pos][sum][mod];
int up=lim?bit[pos]:9; LL res=0;
Fo(i,0,up) res+=dfs(pos-1,sum+i,(mod*10+i)%MOD,lim&&i==bit[pos]);
if(!lim) dp[pos][sum][mod]=res;
return res;
} LL sol(LL x) {
LL len=0,res=0;
while(x) bit[++len]=x%10,x/=10;
for(MOD=1;MOD<=len*9;MOD++) {
memset(dp,-1,sizeof(dp));
res+=dfs(len,0,0,1);
}
return res;
} int main() {
LL l=read(),r=read();
printf("%lld",sol(r)-sol(l-1));
return 0;
}

[luogu4127 AHOI2009] 同类分布 (数位dp)的更多相关文章

  1. [BZOJ1799][AHOI2009]同类分布(数位DP)

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MBSubmit: 1635  Solved: 728[Submit][S ...

  2. bzoj 1799: [Ahoi2009]self 同类分布 数位dp

    1799: [Ahoi2009]self 同类分布 Time Limit: 50 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Descripti ...

  3. BZOJ1799 [Ahoi2009]self 同类分布[数位DP]

    求出[a,b]中各位数字之和能整除原数的数的个数. 有困难的一道题.被迫看了题解:枚举每一个各位数字的和($<=162$),设计状态$f[len][sum][rest]$表示dp后面$len$位 ...

  4. BZOJ1799 self 同类分布 数位dp

    BZOJ1799self 同类分布 去博客园看该题解 题意 给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数. [约束条件]1 ≤ a ≤ b ≤ 10^18 题解 1.所有的位数之和&l ...

  5. BZOJ 1799 同类分布(数位DP)

    给出a,b,求出[a,b]中各位数字之和能整除原数的数的个数.1<=a<=b<=1e18. 注意到各位数字之和最大是153.考虑枚举这个东西.那么需要统计的是[0,a-1]和[0,b ...

  6. bzoj1799同类分布——数位DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1799 数位DP. 1.循环方法 预处理出每个位数上,和为某个数,模某个数余某个数的所有情况: ...

  7. 【BZOJ1799】[AHOI2009]同类分布(动态规划)

    [BZOJ1799][AHOI2009]同类分布(动态规划) 题面 BZOJ 洛谷 题解 很容易想到数位\(dp\),然而数字和整除原数似乎不好记录.没关系,直接枚举数字和就好了,这样子就可以把整除原 ...

  8. 洛谷 P4127 [AHOI2009]同类分布 解题报告

    P4127 [AHOI2009]同类分布 题目描述 给出两个数\(a,b\),求出\([a,b]\)中各位数字之和能整除原数的数的个数. 说明 对于所有的数据,\(1 ≤ a ≤ b ≤ 10^{18 ...

  9. P4127 [AHOI2009]同类分布

    P4127 [AHOI2009]同类分布 题解 好的,敲上数位DP  DFS板子 记录一下填的各位数字之和 sum ,然后记录一下原数 yuan 最后判断一下  yuan%sum==0 不就好啦??? ...

随机推荐

  1. input keyevent发送按键值【转】

    本文转载自:http://blog.csdn.net/moyu123456789/article/details/71209893 1.adb shell进入android设备,执行命令input k ...

  2. forceStopPackage与killBackgroundProcesses方法

    最近了解一键清理功能,需要实现强制关闭进程的功能.下面介绍下killBackgroundProcesses()方法和forceStopPackage()方法. killBackgroundProces ...

  3. P2610 [ZJOI2012]旅游 树的直径

    这个题就是建图不太好建,但是我们一想,三角形貌似只能两两挨着,最后会变成一个二叉树,所以问题就变成求树的直径.建图用pair套map超级简单. 题干: 到了难得的暑假,为了庆祝小白在数学考试中取得的优 ...

  4. django 数据库连接模块解析及简单长连接改造

    django 数据库连接模块解析及简单长连接改造工作中纯服务端的项目用到了线程池和django的ORM部分.django 的数据库连接在每一个线程中开启一份,并在查询完毕后自动关闭连接. 线程池处理任 ...

  5. FreeMarker:目录

    ylbtech-FreeMarker:目录 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   作者:ylbtech出处:http://yl ...

  6. 25.EXTJS 主页面的jsp

    1. /** * @author sux * @time 2011-1-11 * @desc main page */ var mainPage = Ext.extend(Ext.Viewport,{ ...

  7. java笔记线程方式1获取对象名称

    * 如何获取线程对象的名称呢? * public final String getName():获取线程的名称. * 如何设置线程对象的名称呢? * public final void setName ...

  8. 无线网络发射选址 2014年NOIP全国联赛提高组(二维前缀和)

    P2038 无线网络发射器选址 题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南 ...

  9. react hooks 全面转换攻略(二) react本篇剩余 api

    useCallback,useMemo 因为这两个 api 的作用是一样的,所以我放在一起讲; 语法: function useMemo<T>(factory: () => T, d ...

  10. 在CentOS下安装VMware tool

    VMware tools是虚拟机VMware Workstation自带的一款工具.它的作用就是使用户可以从物理主机直接往虚拟机里面拖文件.如果不安装它,我们是无法进行虚拟机和物理机之间的文件传输的. ...