http://poj.org/problem?id=3694

这一题  为什么要找最小祖先呢

当两个节点连到一块的时候  找最小公共节点就相当于找强连通分支

再找最小公共节点的过程中直到找到  这个过程中所有的点就是一个强连通分支

现在要求桥   只需用没有加边的时候的桥数减去后来找到的强连通分支里的桥数就得到加边后的桥数

Network
Time Limit: 5000MS   Memory Limit: 65536K
Total Submissions: 7720   Accepted: 2823

Description

A network administrator manages a large network. The network consists of N computers and M links between pairs of computers. Any pair of computers are connected directly or indirectly by successive links, so data can be transformed between any two computers. The administrator finds that some links are vital to the network, because failure of any one of them can cause that data can't be transformed between some computers. He call such a link a bridge. He is planning to add some new links one by one to eliminate all bridges.

You are to help the administrator by reporting the number of bridges in the network after each new link is added.

Input

The input consists of multiple test cases. Each test case starts with a line containing two integers N(1 ≤ N ≤ 100,000) and M(N - 1 ≤ M ≤ 200,000).
Each of the following M lines contains two integers A and B ( 1≤ A ≠ B ≤ N), which indicates a link between computer A and B. Computers are numbered from 1 to N. It is guaranteed that any two computers are connected in the initial network.
The next line contains a single integer Q ( 1 ≤ Q ≤ 1,000), which is the number of new links the administrator plans to add to the network one by one.
The i-th line of the following Q lines contains two integer A and B (1 ≤ A ≠ B ≤ N), which is the i-th added new link connecting computer A and B.

The last test case is followed by a line containing two zeros.

Output

For each test case, print a line containing the test case number( beginning with 1) and Q lines, the i-th of which contains a integer indicating the number of bridges in the network after the first i new links are added. Print a blank line after the output for each test case.

Sample Input

3 2
1 2
2 3
2
1 2
1 3
4 4
1 2
2 1
2 3
1 4
2
1 2
3 4
0 0

Sample Output

Case 1:
1
0 Case 2:
2
0
#include<iostream>
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector> using namespace std;
#define N 200000 int low[N],dfn[N],n,fa[N],Stack[N],bridge[N];
int Time,top,ans;
vector<vector <int> >G; void Inn()
{
G.clear();
G.resize(n+);
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(fa,,sizeof(fa));
memset(bridge,,sizeof(bridge));
memset(Stack,,sizeof(Stack));
Time=top=ans=;
} void Tarjin(int u,int f)
{
dfn[u]=low[u]=++Time;
fa[u]=f;
int len=G[u].size(),v;
for(int i=; i<len; i++)
{
v=G[u][i];
if(!dfn[v])
{
Tarjin(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u])
{
bridge[v]++;
ans++;
}
}
else if(v!=f)
low[u]=min(low[u],dfn[v]);
}
}
void LCA(int a,int b)
{
if(a==b)
return;
if(dfn[a]>dfn[b])
{
int v=fa[a];
if(bridge[a]>)
{
bridge[a]=;
ans--;
}
LCA(v,b);
}
else
{
int v=fa[b];
if(bridge[b]>)
{
bridge[b]=;
ans--;
}
LCA(a,v);
}
} int main()
{
int m,a,b,q,i,t=;
while(scanf("%d %d",&n,&m),n+m)
{
Inn();
for(i=; i<=m; i++)
{
scanf("%d %d",&a,&b);
G[a].push_back(b);
G[b].push_back(a);
}
Tarjin(,);
scanf("%d",&q);
printf("Case %d:\n",t++);
while(q--)
{
scanf("%d %d",&a,&b);
LCA(a,b);
printf("%d\n",ans);
}
}
return ;
}

Network-POJ3694(最小公共祖先LCA+Tarjin)的更多相关文章

  1. Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集)

    Luogu 2245 星际导航(最小生成树,最近公共祖先LCA,并查集) Description sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为 ...

  2. 近期公共祖先(LCA)——离线Tarjan算法+并查集优化

    一. 离线Tarjan算法 LCA问题(lowest common ancestors):在一个有根树T中.两个节点和 e&sig=3136f1d5fcf75709d9ac882bd8cfe0 ...

  3. 51.Lowest Common Ancestor of a Binary Tree(二叉树的最小公共祖先)

    Level:   Medium 题目描述: Given a binary tree, find the lowest common ancestor (LCA) of two given nodes ...

  4. 【lhyaaa】最近公共祖先LCA——倍增!!!

    高级的算法——倍增!!! 根据LCA的定义,我们可以知道假如有两个节点x和y,则LCA(x,y)是 x 到根的路 径与 y 到根的路径的交汇点,同时也是 x 和 y 之间所有路径中深度最小的节 点,所 ...

  5. POJ 1470 Closest Common Ancestors(最近公共祖先 LCA)

    POJ 1470 Closest Common Ancestors(最近公共祖先 LCA) Description Write a program that takes as input a root ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. [模板] 最近公共祖先/lca

    简介 最近公共祖先 \(lca(a,b)\) 指的是a到根的路径和b到n的路径的深度最大的公共点. 定理. 以 \(r\) 为根的树上的路径 \((a,b) = (r,a) + (r,b) - 2 * ...

  8. [leetcode]236. Lowest Common Ancestor of a Binary Tree树的最小公共祖先

    如果一个节点的左右子树上分别有两个节点,那么这棵树是祖先,但是不一定是最小的,但是从下边开始判断,找到后一直返回到上边就是最小的. 如果一个节点的左右子树上只有一个子树上遍历到了节点,那么那个子树可能 ...

  9. 最近公共祖先(LCA)的三种求解方法

    转载来自:https://blog.andrewei.info/2015/10/08/e6-9c-80-e8-bf-91-e5-85-ac-e5-85-b1-e7-a5-96-e5-85-88lca- ...

随机推荐

  1. 一个完整的http请求分析

    Request URL:http://localhost:8080/test.jhtmlRequest Method:POSTStatus Code:200 OKRemote Address:[::1 ...

  2. asp IIS网站的配置(Win7下启用IIS7配置ASP运行环境)

    其实win7下的IIS7配置过程是非常简单的.下面让seo博客来详细的介绍一下win7下配置IIS7环境运行ASP网站的方法,以供初接触者参考   第一次在windows7下配置IIS,虽然有丰富的x ...

  3. webpack3整理(第一节/满三节)

    一.css文件打包到js中(loader的三种写法) //第一种写法:直接用use. module: { rules: [{ test: /\.css$/, use: ['style-loader', ...

  4. zabbix监控之grafana

    zabbix监控之grafana

  5. swift 待研备份

    https://www.ctolib.com/topics-115290.html 但是还是用到了一个叫做 The Protocol Witness Table (PWT) 的函数表 https:// ...

  6. swift potocol 作为参量时函数的派发顺序

    1.检查protocol本体是否声明调用函数: 2.如果没有,检查protocol扩展是否有该函数:如果扩展中也没有,报错: 3.如果本体声明了函数,使用动态派发机制进行派发:扩展中的实现位于最末位.

  7. Java SE、Java EE、Java ME 三者区别

    现在一个个来分析 1. Java SE(Java Platform,Standard Edition).Java SE 以前称为 J2SE.它允许开发和部署在桌面.服务器.嵌入式环境和实时环境中使用的 ...

  8. genymotion 双击打开后 图标只显示在任务栏 无法在电脑上显示

    解决办法 删除 c:/users/user/AppData/local/Genymobile  例如:C:\Users\lenovo\AppData\Local\Genymobile 删除注册表:HK ...

  9. 【C语言】控制台窗口图形界面编程(五):文本移动

    目录 00. 目录 01. CHAR_INFO结构 02. ScrollConsoleScreenBuffer函数 03. 程序示例 04. 官方参考程序 00. 目录 01. CHAR_INFO结构 ...

  10. idea搭建SSM的maven项目(tomcat容器)

    一.创建maven的web项目 (1)选择项目的骨架 (2)写项目的坐标 (3)maven的设置 设置maven的本地仓库,以及配置文件的位置,同时点击+号,填入archetypeCatalog和in ...