使用HDP快速搭建Hadoop开发环境 | Debugo
本文简单记录了一下使用VMware workstation 10、CentOS和HDP 2.0.6(Hadoop 2.2)发行版构建Hadoop开发测试环境的全部流程。这个过程中我遇到了不少问题,也耽误了不少的时间,所以将此文奉上,希望对大家有所帮助。
本文使用两台虚拟机搭建真实集群环境,操作系统为Cent OS 6.5。可以使用VMware Workstation的简易安装模式来进行。
0. 安装CentOS 6.5虚拟机
根据向导设置系统用户、CPU、内存、磁盘和网络。这里为了让yum能连接互联网,需要选择桥接模式。
然后等待安装结束(使用SSD硬盘不到10分钟),这个过程会自动安装VMware Tools。下面正式开始配置系统和HDP。
1. 服务器基本设置
192.168.1.210 hdp01
192.168.1.220 hdp02
vim /etc/selinux/config
SELINUX=disabled
vim /etc/sysconfig/network
HOSTNAME=hdp01 #主机名分别为hdp01, hdp02
1
2
3
4
5
6
7
|
vim /etc/hosts
192.168.1.210 hdp01
192.168.1.220 hdp02
vim /etc/selinux/config
SELINUX=disabled
vim /etc/sysconfig/network
HOSTNAME=hdp01 #主机名分别为hdp01, hdp02
|
关闭不必要的服务:
chkconfig abrt-ccpp off
chkconfig abrtd off
chkconfig acpid off
chkconfig atd off
chkconfig bluetooth off
chkconfig cpuspeed off
chkconfig cpuspeed off
chkconfig ip6tables off
chkconfig iptables off
chkconfig netconsole off
chkconfig netfs off
chkconfig postfix off
chkconfig restorecond off
chkconfig httpd off
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
chkconfig NetworkManager off
chkconfig abrt-ccpp off
chkconfig abrtd off
chkconfig acpid off
chkconfig atd off
chkconfig bluetooth off
chkconfig cpuspeed off
chkconfig cpuspeed off
chkconfig ip6tables off
chkconfig iptables off
chkconfig netconsole off
chkconfig netfs off
chkconfig postfix off
chkconfig restorecond off
chkconfig httpd off
|
完成后重启一下。
2. 在hdp01上安装ambari
(1).下载HDP repo
下载HDP提供的yum repo文件并拷贝到/etc/yum.repos.d中
--2014-03-10 04:57:58-- http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.4.1.61/ambari.repoResolving public-repo-1.hortonworks.com... 54.230.127.224, 205.251.212.150, 54.230.124.207, ...
Connecting to public-repo-1.hortonworks.com|54.230.127.224|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 770 [binary/octet-stream]
Saving to: “ambari.repo”
100%[======================================>] 770 --.-K/s in 0s
2014-03-10 04:58:01 (58.8 MB/s) - “ambari.repo” saved [770/770]
[root@hdp01 ~]# cp ambari.repo /etc/yum.repos.d/
(2).使用yum安装ambari-server
[root@hdp01 ~]# yum –y install ambari-server
...
Total download size: 49 M
Installed size: 113 M
....
Installed:
ambari-server.noarch 0:1.4.1.61-1
Dependency Installed:
postgresql.x86_64 0:8.4.20-1.el6_5 postgresql-libs.x86_64 0:8.4.20-1.el6_5 postgresql-server.x86_64 0:8.4.20-1.el6_5
Complete!
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
[root@hdp01 ~]# wget http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.4.1.61/ambari.repo
--2014-03-10 04:57:58-- http://public-repo-1.hortonworks.com/ambari/centos6/1.x/updates/1.4.1.61/ambari.repoResolving public-repo-1.hortonworks.com... 54.230.127.224, 205.251.212.150, 54.230.124.207, ...
Connecting to public-repo-1.hortonworks.com|54.230.127.224|:80... connected.
HTTP request sent, awaiting response... 200 OK
Length: 770 [binary/octet-stream]
Saving to: “ambari.repo”
100%[======================================>] 770 --.-K/s in 0s
2014-03-10 04:58:01 (58.8 MB/s) - “ambari.repo” saved [770/770]
[root@hdp01 ~]# cp ambari.repo /etc/yum.repos.d/
(2).使用yum安装ambari-server
[root@hdp01 ~]# yum –y install ambari-server
...
Total download size: 49 M
Installed size: 113 M
....
Installed:
ambari-server.noarch 0:1.4.1.61-1
Dependency Installed:
postgresql.x86_64 0:8.4.20-1.el6_5 postgresql-libs.x86_64 0:8.4.20-1.el6_5 postgresql-server.x86_64 0:8.4.20-1.el6_5
Complete!
|
3. 配置root用户的ssh互信
分别在hdp01和hdp02生成key,再通过ssh-copy-id拷贝到hdp01和hdp02上去。
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory ' /root/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /hroot/.ssh/id_rsa.
...
[root@hdp02 .ssh]# ssh-copy-id hdp01
The authenticity of host 'hdp01 (192.168.1.210)' can't be established.
RSA key fingerprint is 90:3b:db:2d:c4:34:49:03:e6:d7:cc:cb:b7:60:4d:d0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hdp01,192.168.1.210' (RSA) to the list of known hosts.
root@hdp01's password:
Now try logging into the machine, with "ssh 'hdp01'", and check in:
.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expecting.
[root@hdp02 .ssh]# ssh-copy-id hdp02
The authenticity of host 'hdp02 (192.168.1.220)' can't be established.
RSA key fingerprint is 11:cb:c9:9e:b6:c0:a1:95:98:fa:42:aa:95:5f:cf:98.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hdp02,192.168.1.220' (RSA) to the list of known hosts.
root@hdp02's password:
Now try logging into the machine, with "ssh 'hdp02'", and check in:
.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expecting.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
[root@hdp01 ~]# ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/root/.ssh/id_rsa):
Created directory ' /root/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /hroot/.ssh/id_rsa.
...
[root@hdp02 .ssh]# ssh-copy-id hdp01
The authenticity of host 'hdp01 (192.168.1.210)' can't be established.
RSA key fingerprint is 90:3b:db:2d:c4:34:49:03:e6:d7:cc:cb:b7:60:4d:d0.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hdp01,192.168.1.210' (RSA) to the list of known hosts.
root@hdp01's password:
Now try logging into the machine, with "ssh 'hdp01'", and check in:
.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expecting.
[root@hdp02 .ssh]# ssh-copy-id hdp02
The authenticity of host 'hdp02 (192.168.1.220)' can't be established.
RSA key fingerprint is 11:cb:c9:9e:b6:c0:a1:95:98:fa:42:aa:95:5f:cf:98.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'hdp02,192.168.1.220' (RSA) to the list of known hosts.
root@hdp02's password:
Now try logging into the machine, with "ssh 'hdp02'", and check in:
.ssh/authorized_keys
to make sure we haven't added extra keys that you weren't expecting.
|
4. 配置ambari server
Apache Ambari是基于Web的Apache Hadoop的自动部署、管理和监控工具。这里ambari server的metastore使用了自带了postgre数据库。
Using python /usr/bin/python2.6
Initializing...
Setup ambari-server
Checking SELinux...
SELinux status is 'disabled'
Customize user account for ambari-server daemon [y/n] (n)?
Adjusting ambari-server permissions and ownership...
Checking iptables...
Checking JDK...
To download the Oracle JDK you must accept the license terms found at http://www.oracle.com/technetwork/java/javase/terms/license/index.html and not accepting will cancel the Ambari Server setup.
Do you accept the Oracle Binary Code License Agreement [y/n] (y)?
Downloading JDK from http://public-repo-1.hortonworks.com/ARTIFACTS/jdk-6u31-linux-x64.bin to /var/lib/ambari-server/resources/jdk-6u31-linux-x64.bin
JDK distribution size is 85581913 bytes
dk-6u31-linux-x64.bin... 100% (81.6 MB of 81.6 MB)
Successfully downloaded JDK distribution to /var/lib/ambari-server/resources/jdk-6u31-linux-x64.bin
Installing JDK to /usr/jdk64
Successfully installed JDK to /usr/jdk64/jdk1.6.0_31
Downloading JCE Policy archive from http://public-repo-1.hortonworks.com/ARTIFACTS/jce_policy-6.zip to /var/lib/ambari-server/resources/jce_policy-6.zip
Successfully downloaded JCE Policy archive to /var/lib/ambari-server/resources/jce_policy-6.zip
Completing setup...
Configuring database...
Enter advanced database configuration [y/n] (n)? y
==============================================================================
Choose one of the following options:
[1] - PostgreSQL (Embedded)
[2] - Oracle
==============================================================================
Enter choice (1): 1
Database Name (ambari):
Username (ambari):
Enter Database Password (bigdata):
Default properties detected. Using built-in database.
Checking PostgreSQL...
Running initdb: This may take upto a minute.
About to start PostgreSQL
Configuring local database...
Connecting to the database. Attempt 1...
Configuring PostgreSQL...
Restarting PostgreSQL
Ambari Server 'setup' completed successfully.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
|
[root@hdp01 ~]# ambari-server setup
Using python /usr/bin/python2.6
Initializing...
Setup ambari-server
Checking SELinux...
SELinux status is 'disabled'
Customize user account for ambari-server daemon [y/n] (n)?
Adjusting ambari-server permissions and ownership...
Checking iptables...
Checking JDK...
To download the Oracle JDK you must accept the license terms found at http://www.oracle.com/technetwork/java/javase/terms/license/index.html and not accepting will cancel the Ambari Server setup.
Do you accept the Oracle Binary Code License Agreement [y/n] (y)?
Downloading JDK from http://public-repo-1.hortonworks.com/ARTIFACTS/jdk-6u31-linux-x64.bin to /var/lib/ambari-server/resources/jdk-6u31-linux-x64.bin
JDK distribution size is 85581913 bytes
dk-6u31-linux-x64.bin... 100% (81.6 MB of 81.6 MB)
Successfully downloaded JDK distribution to /var/lib/ambari-server/resources/jdk-6u31-linux-x64.bin
Installing JDK to /usr/jdk64
Successfully installed JDK to /usr/jdk64/jdk1.6.0_31
Downloading JCE Policy archive from http://public-repo-1.hortonworks.com/ARTIFACTS/jce_policy-6.zip to /var/lib/ambari-server/resources/jce_policy-6.zip
Successfully downloaded JCE Policy archive to /var/lib/ambari-server/resources/jce_policy-6.zip
Completing setup...
Configuring database...
Enter advanced database configuration [y/n] (n)? y
==============================================================================
Choose one of the following options:
[1] - PostgreSQL (Embedded)
[2] - Oracle
==============================================================================
Enter choice (1): 1
Database Name (ambari):
Username (ambari):
Enter Database Password (bigdata):
Default properties detected. Using built-in database.
Checking PostgreSQL...
Running initdb: This may take upto a minute.
About to start PostgreSQL
Configuring local database...
Connecting to the database. Attempt 1...
Configuring PostgreSQL...
Restarting PostgreSQL
Ambari Server 'setup' completed successfully.
|
使用root用户来启动ambari server
Using python /usr/bin/python2.6
Starting ambari-server
Unable to check iptables status when starting without root privileges.
Please do not forget to disable or adjust iptables if needed
Unable to check PostgreSQL server status when starting without root privileges.
Please do not forget to start PostgreSQL server.
Server PID at: /var/run/ambari-server/ambari-server.pid
Server out at: /var/log/ambari-server/ambari-server.out
Server log at: /var/log/ambari-server/ambari-server.log
Ambari Server 'start' completed successfully.
1
2
3
4
5
6
7
8
9
10
11
|
[root@hdp01 ~]$ ambari-server start
Using python /usr/bin/python2.6
Starting ambari-server
Unable to check iptables status when starting without root privileges.
Please do not forget to disable or adjust iptables if needed
Unable to check PostgreSQL server status when starting without root privileges.
Please do not forget to start PostgreSQL server.
Server PID at: /var/run/ambari-server/ambari-server.pid
Server out at: /var/log/ambari-server/ambari-server.out
Server log at: /var/log/ambari-server/ambari-server.log
Ambari Server 'start' completed successfully.
|
5.安装mysql
使用mysql-server来存hive metastore。
首先安装remi软件源(为了能通过yum安装Mysql 5.5):
Installed:
epel-release.noarch 0:6-8
Complete!
[root@hdp01 ~]# rpm -Uvh http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
Retrieving http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
warning: /var/tmp/rpm-tmp.JSZuMv: Header V3 DSA/SHA1 Signature, key ID 00f97f56: NOKEY
Preparing... ########################################### [100%]
1:remi-release ########################################### [100%]
[root@hdp01 ~]# yum install –y mysql-server
......
Total download size: 12 M
......
[root@hdp01 ~]# yum --enablerepo=remi,remi-test list mysql mysql-server
Loaded plugins: fastestmirror, refresh-packagekit, security
Loading mirror speeds from cached hostfile
......
Available Packages
mysql.x86_64 5.5.36-1.el6.remi
mysql-server.x86_64 5.5.36-1.el6.remi
[root@hdp01 ~]# yum --enablerepo=remi,remi-test install mysql mysql-server
Loaded plugins: fastestmirror, refresh-packagekit, security
Loading mirror speeds from cached hostfile
......
Total download size: 20 M
......
[root@hdp01 ~]# /usr/bin/mysql_secure_installation
[root@hdp01 ~]# chkconfig --level 235 mysqld on
[root@hdp01 ~]# /usr/bin/mysql_secure_installation
......
Enter current password for root (enter for none):
OK, successfully used password, moving on...
Change the root password? [Y/n] n
... skipping.
Remove anonymous users? [Y/n] Y
... Success!
Disallow root login remotely? [Y/n] Y
... Success!
Remove test database and access to it? [Y/n] Y
- Dropping test database...
... Success!
- Removing privileges on test database...
... Success!
Reload privilege tables now? [Y/n] Y
... Success!
All done! If you've completed all of the above steps, your MySQL installation should now be secure.
Thanks for using MySQL!
[root@hdp01 ~]# service mysqld start
Starting mysqld: [ OK ]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
|
[root@hdp01 ~]# yum install -y epel-release
Installed:
epel-release.noarch 0:6-8
Complete!
[root@hdp01 ~]# rpm -Uvh http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
Retrieving http://rpms.famillecollet.com/enterprise/remi-release-6.rpm
warning: /var/tmp/rpm-tmp.JSZuMv: Header V3 DSA/SHA1 Signature, key ID 00f97f56: NOKEY
Preparing... ########################################### [100%]
1:remi-release ########################################### [100%]
[root@hdp01 ~]# yum install –y mysql-server
......
Total download size: 12 M
......
[root@hdp01 ~]# yum --enablerepo=remi,remi-test list mysql mysql-server
Loaded plugins: fastestmirror, refresh-packagekit, security
Loading mirror speeds from cached hostfile
......
Available Packages
mysql.x86_64 5.5.36-1.el6.remi
mysql-server.x86_64 5.5.36-1.el6.remi
[root@hdp01 ~]# yum --enablerepo=remi,remi-test install mysql mysql-server
Loaded plugins: fastestmirror, refresh-packagekit, security
Loading mirror speeds from cached hostfile
......
Total download size: 20 M
......
[root@hdp01 ~]# /usr/bin/mysql_secure_installation
[root@hdp01 ~]# chkconfig --level 235 mysqld on
[root@hdp01 ~]# /usr/bin/mysql_secure_installation
......
Enter current password for root (enter for none):
OK, successfully used password, moving on...
Change the root password? [Y/n] n
... skipping.
Remove anonymous users? [Y/n] Y
... Success!
Disallow root login remotely? [Y/n] Y
... Success!
Remove test database and access to it? [Y/n] Y
- Dropping test database...
... Success!
- Removing privileges on test database...
... Success!
Reload privilege tables now? [Y/n] Y
... Success!
All done! If you've completed all of the above steps, your MySQL installation should now be secure.
Thanks for using MySQL!
[root@hdp01 ~]# service mysqld start
Starting mysqld: [ OK ]
|
下面创建数据库和用户
mysql> create database hive;
Query OK, 1 row affected (0.00 sec)
mysql> create user "hive" identified by "hive123";
Query OK, 0 rows affected (0.00 sec)
mysql> grant all privileges on hive.* to hive;
Query OK, 0 rows affected (0.00 sec)
mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)
1
2
3
4
5
6
7
8
9
|
[root@hdp01 ~]# mysql –u root –p
mysql> create database hive;
Query OK, 1 row affected (0.00 sec)
mysql> create user "hive" identified by "hive123";
Query OK, 0 rows affected (0.00 sec)
mysql> grant all privileges on hive.* to hive;
Query OK, 0 rows affected (0.00 sec)
mysql> flush privileges;
Query OK, 0 rows affected (0.00 sec)
|
6.使用浏览器打开, 输入admin/admin
http://hdp01:8080/#/login
Name your cluster: debugo_test
Stack: HDP 2.0.6
Target Hosts: hdp01,hdp02
Host Registration Information:
由于之前配置了root用户的ssh互信,这里需要选择/root/.ssh下面id.rsa私钥文件,然后Register and confirm继续:
下面如果出现os_type_check.sh脚本执行失败导致的Local OS is not compatible with cluster primary OS报错,这是一个BUG,可以直接修改该os_type_check.sh使得输出里面直接在输出结果之前的RES=0。
成功后,ambari-agent 安装完成,可以通过ambari-agent命令来控制:
ambari-agent currently not running
Usage: /usr/sbin/ambari-agent {start|stop|restart|status}
#在hdp01和hdp02上让ambari-agent在开机时启动
[root@hdp02 Desktop]# chkconfig ambari-agent –level 35 on
1
2
3
4
5
|
[root@hdp02 Desktop]# ambari-agent status
ambari-agent currently not running
Usage: /usr/sbin/ambari-agent {start|stop|restart|status}
#在hdp01和hdp02上让ambari-agent在开机时启动
[root@hdp02 Desktop]# chkconfig ambari-agent –level 35 on
|
下一步选择要安装的组件,这里不选择Nagios, Ganglia和Oozie。对于Hive,使用前面安装的mysql-server:
另外将YARN的yarn.acl.enable设置为false。就进行下一步的Deploy了。这是一个极为漫长的过程,中途遇到failure就retry一下。大约一小时后安装完成:
Next以后就进入了期待已久的Dashboard界面,此时安装的组件已经全部启动。
7.开发环境的配置
下载eclipse 4.3(kepler),maven-3.2.1到/opt下,设置环境变量
export JAVA_HOME=/usr/jdk64/jdk1.6.0_31
export MAVEN_HOME=/opt/apache-maven-3.2.1
export PATH=$PATH:$JAVA_HOME/bin:$MAVEN_HOME/bin
export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/lib/tools.jar
[root@hdp01 opt]# chgrp –R hadoop apache-maven-3.2.1/ eclipse/ workspace/
[root@hdp01 opt]# useradd hadoop
[root@hdp01 opt]# echo “hadoop” > passwd –stdin hadoop
1
2
3
4
5
6
7
8
|
[root@hdp01 opt]# vim /etc/profile
export JAVA_HOME=/usr/jdk64/jdk1.6.0_31
export MAVEN_HOME=/opt/apache-maven-3.2.1
export PATH=$PATH:$JAVA_HOME/bin:$MAVEN_HOME/bin
export CLASSPATH=.:$JAVA_HOME/lib:$JAVA_HOME/lib/tools.jar
[root@hdp01 opt]# chgrp –R hadoop apache-maven-3.2.1/ eclipse/ workspace/
[root@hdp01 opt]# useradd hadoop
[root@hdp01 opt]# echo “hadoop” > passwd –stdin hadoop
|
打开eclipse -> help -> Install new softwares,下载maven插件( http://download.eclipse.org/m2e-wtp/releases/kepler/ )。安装完成后重启eclipse,就可以正式开始hadoop之旅了。
8. WordCount的编译
(1). 新建一个maven项目
(2). Create a simple project(skip archetype selection)
(3). 如果出现JRE安装相关的Warning
Build path specifies execution environment J2SE-1.5. There are no JREs installed in the workspace that are strictly compatible with this environment.
可以在项目properties页中删除JRE1.5SE这一项,然后Add Library -> JRE System Library -> workspace default JRE即可。
(4). WordCount.java
在com.debugo.com.mapred包下创建WordCount类:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
|
package com.debugo.hadoop.mapred;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
Job job = new Job(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
|
编辑pom.xml,添加依赖库。通过maven的repository里可以查得(http://mvnrepository.com/artifact/org.apache.hadoop)
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.3.0</version>
</dependency>
</dependencies>
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
|
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.3.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.3.0</version>
</dependency>
</dependencies>
|
这里需要注意的是,直接运行会包map任务找不到WordCount中的子类,所以要在mvn install之后将自己项目这个包再次引入到mvn项目中来。
mvn install:install-file -DgroupId=com.debugo.hadoopDartifactId=mr -Dpackaging=jar -Dversion=0.1 -Dfile=mr-0.0.1-SNAPSHOT.jar -DgeneratePOM=true
然后添加
<groupId>com.debugo.hadoop</groupId>
<artifactId>mr</artifactId>
<version>0.1</version>
</dependency>
1
2
3
4
5
|
<dependency>
<groupId>com.debugo.hadoop</groupId>
<artifactId>mr</artifactId>
<version>0.1</version>
</dependency>
|
另外,http://www.cnblogs.com/spork/archive/2010/04/21/1717592.html,也是一个很好的解决方案。
编辑Run Configuration,设置运行参数”/input /output”。
然后创建/input目录: hdfs dfs -mkdir /input
再使用hdfs dfs -put a.txt /input将一些文本传到该目录下。
最后执行这个项目,成功后结果就会输出到/output dfs目录中。
File System Counters
FILE: Number of bytes read=5263
FILE: Number of bytes written=183603
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=6739
HDFS: Number of bytes written=3827
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3075
Total time spent by all reduces in occupied slots (ms)=6294
Total time spent by all map tasks (ms)=3075
Total time spent by all reduce tasks (ms)=3147
Total vcore-seconds taken by all map tasks=3075
Total vcore-seconds taken by all reduce tasks=3147
Total megabyte-seconds taken by all map tasks=4723200
Total megabyte-seconds taken by all reduce tasks=9667584
Map-Reduce Framework
Map input records=144
Map output records=960
Map output bytes=10358
Map output materialized bytes=5263
Input split bytes=104
Combine input records=960
Combine output records=361
Reduce input groups=361
Reduce shuffle bytes=5263
Reduce input records=361
Reduce output records=361
Spilled Records=722
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=26
CPU time spent (ms)=2290
Physical memory (bytes) snapshot=1309593600
Virtual memory (bytes) snapshot=8647901184
Total committed heap usage (bytes)=2021654528
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=6635
File Output Format Counters
Bytes Written=3827
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
|
[2014-03-13 09:52:20,282] INFO 19952[main] - org.apache.hadoop.mapreduce.Job.monitorAndPrintJob(Job.java:1380) - Counters: 49
File System Counters
FILE: Number of bytes read=5263
FILE: Number of bytes written=183603
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=6739
HDFS: Number of bytes written=3827
HDFS: Number of read operations=6
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=1
Launched reduce tasks=1
Data-local map tasks=1
Total time spent by all maps in occupied slots (ms)=3075
Total time spent by all reduces in occupied slots (ms)=6294
Total time spent by all map tasks (ms)=3075
Total time spent by all reduce tasks (ms)=3147
Total vcore-seconds taken by all map tasks=3075
Total vcore-seconds taken by all reduce tasks=3147
Total megabyte-seconds taken by all map tasks=4723200
Total megabyte-seconds taken by all reduce tasks=9667584
Map-Reduce Framework
Map input records=144
Map output records=960
Map output bytes=10358
Map output materialized bytes=5263
Input split bytes=104
Combine input records=960
Combine output records=361
Reduce input groups=361
Reduce shuffle bytes=5263
Reduce input records=361
Reduce output records=361
Spilled Records=722
Shuffled Maps =1
Failed Shuffles=0
Merged Map outputs=1
GC time elapsed (ms)=26
CPU time spent (ms)=2290
Physical memory (bytes) snapshot=1309593600
Virtual memory (bytes) snapshot=8647901184
Total committed heap usage (bytes)=2021654528
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=6635
File Output Format Counters
Bytes Written=3827
|
^^
参考文献:
使用YUM安装MySQL 5.5 http://www.linuxidc.com/Linux/2012-07/65098.htm
HDP官方文档
Canon的maven构建hadoop 1.x版本项目指南 http://blog.fens.me/hadoop-maven-eclipse/
使用HDP快速搭建Hadoop开发环境 | Debugo的更多相关文章
- CentOS 7快速搭建Nodejs开发环境
Node.js是一个事件驱动I/O服务端JavaScript环境,基于Google的V8引擎,V8引擎执行Javascript的速度非常快,性能非常好.学习Nodejs首先需要会安装环境.这里我介绍如 ...
- Linux下快速搭建php开发环境
php开发环境快速搭建 一.Linux下快速搭建php开发环境 1.安装XAMPP for Linux XAMPP(Apache+MySQL+PHP+PERL)是一个功能强大的建站集成软件包,使用XA ...
- Windows下快速搭建安卓开发环境android-studio
Windows下快速搭建安卓开发环境android-studio 发布时间:2018-01-18 来源:网络 上传者:用户 关键字: 安卓 搭建 Android Windows 快速 环境 Studi ...
- 【IntelliJ IDEA新手入门】IDEA如何快速搭建Java开发环境
作为IntelliJ IDEA mac新手,IDEA如何快速搭建Java开发环境呢? 今天小编就给大家带来了IntelliJ IDEA mac使用教程,想知道IDEA如何快速搭建Java开发环境?那就 ...
- 利用CodeBlocks结合freeglut快速搭建OpenGL开发环境
利用CodeBlocks结合freeglut快速搭建OpenGL开发环境 2018-12-19 10:15:48 再次超越梦想 阅读数 180更多 分类专栏: 我的开发日记 版权声明:本文为博主原 ...
- IDEA如何快速搭建Java开发环境
作为IntelliJ IDEA mac新手,IDEA如何快速搭建Java开发环境呢?今天小编就给大家带来了IntelliJ IDEA mac使用教程,想知道IDEA如何快速搭建Java开发环境? 全局 ...
- 【Hadoop】:Windows下使用IDEA搭建Hadoop开发环境
笔者鼓弄了两个星期,终于把所有有关hadoop的环境配置好了,一是虚拟机上的完全分布式集群,但是为了平时写代码的方便,则在windows上也配置了hadoop的伪分布式集群,同时在IDEA上就可以编写 ...
- 基于Eclipse搭建hadoop开发环境
一.基础环境准备 1.Eclipse 下载地址:http://pan.baidu.com/s/1slArxAP 2.JDK1.8 下载地址:http://pan.baidu.com/s/1i5iNy ...
- Linux下搭建hadoop开发环境-超详细
先决条件:开发机器需要联网 已安装java 已安装Desktop组 1.上传安装软件到linux上: 2.安装maven,用于管理项目依赖包:以hadoop用户安装apache-maven-3.0.5 ...
随机推荐
- java分段加载数据,循环和递归两种方式
package org.jimmy.autosearch2019.test; import java.util.ArrayList; public class Test20190328 { priva ...
- 解决aspnet上传文件大小限制
<system.web> <httpRuntime executionTimeout="600" maxRequestLength="20480& ...
- ibatis经验
1.insert,update,delete 返回值(1).insert 返回的为插入的主键值,但必须在配置文件中加入<selectKey/> 如果主键值为String<sele ...
- springmvc请求方法那些事
@RequestMapping 用法详解之地址映射 (2013-08-11 16:06:58) 转载▼ 标签: it 前段时间项目中用到了RESTful模式来开发程序,但是当用POST.PUT模式 ...
- 约束RMQ
不知道为什么网上找不到太多相关的资料,所以写一个小总结,并附有能用的代码,抛砖引玉. 约束RMQ,就是RMQ区间必须满足两项之差最大为1,采用ST表的话,这时候有O(n)建表,O(1)查询的优秀复杂度 ...
- Shading-jdbc源码分析-sql词法解析
前言 前有芋艿大佬已经发过相关分析的文章,自己觉的源码总归要看一下,然后看了就要记录下来(记性很差...),所以就有了这篇文章(以后还要继续更
- 基于mysql数据库 关于sql优化的一些问题
mysql数据库有一个explain关键词,可以对select语句进行分析并且输出详细的select执行过程的详细信息. 对sql explain后输出几个字段: id:SELECT查询的标识符,每个 ...
- 04 Beautiful Soup
Beautiful Soup 简介 简单来说,Beautiful Soup是python的一个库,最主要的功能是从网页抓取数据.官方解释如下: ''' Beautiful Soup提供一些简单的.py ...
- 转载:CentOS7下部署Django项目详细操作步骤
部署是基于:centos7+nginx+uwsgi+python3+django 之上做的 文章转自:Django中文网 https://www.django.cn/article/sh ...
- 我的java web之路(安装)
所有的软件下载完,陪完jdk之后,迎来了一系列的安装工作... 1.安装SQL Server 2005 首先,打开ISS功能,控制面板->程序->打开或关闭windows功能 注意红框内的 ...