noj 2069 赵信的往事 [yy题 无限gcd]
Accepted
|
31MS
|
224K
|
1351Byte
|
2014-11-13 13:32:56.0
|
坑爹的无限gcd,,,尼玛想好久,原来要x对y算一次,y再对x算一次,,,
赵信的往事
总提交 : 20 测试通过 : 2
描述
赵信——德玛西亚的总管,可谓一人之下,万人之上。但谁能想到,他以前在诺克萨斯的角斗场过的是怎样的生活?
那时,成千上万的奴隶或战俘被抓进角斗场,通过血腥的杀戮供贵族们取乐。所以,为了活下去,除了自身的实力之外,拉帮结派也是必不可少的。显然,这样的事只可能发生在互相信赖的人的中间,而在当时,人们互相信赖的标准却很奇怪——每个人都有一个编号,若两个人可以相互信赖,那么当且仅当这两个编号的素因子集合相同。
那么问题来了:
现在有三个人想组团,请问他们能相互信赖么?
输入
先输入一个正整数T,表示共有T组测试样例,1≤T≤10000。
对于每一个测试样例,输入三个正整数,对于第i个数pi,表示第i个人的编号(1≤pi≤109)。
输出
对于每组样例,如果可以可以成功组团,则输出“YES”,否则输出“NO”。
样例输入
2
3 6 9
3 9 27
样例输出
NO
YES
提示
对于样例一,6的素因子集合为{2,3},与其他人不同,所以不行;
对于样例二,所有数的素因子集合均为{3},因此可以组团。
题目来源
yuman
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<set>
#define maxi(a,b) (a)>(b)?(a):(b)
#define mini(a,b) (a)<(b)?(a):(b)
#define N 1000005
#define mod 10000
#define ll long long using namespace std; int T;
int flag;
int a[]; int gcd(int x,int y)
{
if(y==)
return x;
return gcd(y,x%y);
} void ini()
{
flag=;
scanf("%d%d%d",&a[],&a[],&a[]);
//printf("%d %d %d\n",a[0],a[1],a[2]);
sort(a,a+);
} void cal(int x,int y)
{
int g;
if(x== && y==) return;
g=gcd(x,y);
x/=g;
y/=g;
if(x== && y==) return;
else if(g== && y%x!=){
flag=;return;
}
else{
cal(x,g);
}
return;
//}
} void solve()
{
// printf(" sss\n");
cal(a[],a[]);
cal(a[],a[]);
if(flag==) return;
// printf(" sss2\n");
cal(a[],a[]);
cal(a[],a[]);
} void out()
{
//printf(" oooo\n");
if(flag==){
printf("YES\n");
}
else{
printf("NO\n");
}
} int main()
{
// freopen("data.in","r",stdin);
scanf("%d",&T);
while(T--)
// while(scanf("%I64d",&n)!=EOF)
{
ini();
solve();
out();
}
return ;
}
noj 2069 赵信的往事 [yy题 无限gcd]的更多相关文章
- [YY题]HDOJ5288 OO’s Sequence
题意:求这个式子 $\sum \limits_{i=1}^{n} \sum \limits_{j=1}^{m} f(i, j) mod (10^9 + 7)$ 的值 就是对每个区间[i, j]枚举区间 ...
- NOJ 1643 阶乘除法(YY+小技巧)
[1643] 阶乘除法 时间限制: 5000 ms 内存限制: 65535 K 问题描述 输入两个正整数 n, m,输出 n!/m!,其中阶乘定义为 n!= 1*2*3*...*n (n>=1) ...
- cf 215 C. Crosses yy题
链接:http://codeforces.com/problemset/problem/215/C C. Crosses time limit per test 2 seconds memory li ...
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
- 【Luogu】P1072Hankson的趣味题(gcd)
这题真TM的趣味. 可以说我的动手能力还是不行,想到了算法却写不出来.以后说自己数论会GCD的时候只好虚了…… 我们首先这么想. x与a0的最大公约数为a1,那么我们把x/=a1,a0/=a1之后,x ...
- [俺们学校的题]伪.GCD
GCD 题面: 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 思路: 首先两个数gcd(x,y)=p为质数,那么令x=k1*p,y=k2*p,由于是最 ...
- CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)
http://codeforces.com/problemset/problem/992/B 题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 【HDU5512】 2015沈阳赛区D题 规律题(GCD)
第一篇博客,就从一个比较简单的题目入手吧! 题目: [HDU5512] 题意: 有n个塔,编号为1~n, 编号为a,b的塔已经维修好,此外其他的塔都需要维修.塔的维修是有顺序的,每次只能维修编号为k ...
随机推荐
- django 第一次运行出错
直接运行整个项目正常,直接运行url文件报错 报错内容: E:\Python\python.exe D:/Python储存文件/ceshiweb/ceshiweb/urls.pyTraceback ( ...
- 公共Service的抽取小例
package cn.sxx.service; import java.util.List; public interface BaseService<T,Q> { public void ...
- Vuex基本概念
Vuex基本概念 State Getter Mutation Action Module 简单的Store import Vue from 'vue'; import Vuex from 'vuex' ...
- 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍
1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...
- C++系统学习之七:类
类的基本思想是数据抽象和封装. 数据抽象是一种依赖于接口和实现分离的编程技术.类的接口包括用户所能执行的操作:类的实现包括类的数据成员.负责接口实现的函数体以及定义类所需的各种私有函数. 封装实现了类 ...
- MySQL-简要说明
分类 安装发展顺序分为: 网状型数据库 层次型数据库 关系型数据库 面向对象数据库 主流:关系型数据库 关系型数据库 事务transaction: 多个操作被当作一个整体对待 • ACID: ...
- docker:安装mysql
文章来源:https://www.cnblogs.com/hello-tl/p/9234429.html 1.添加镜像 docker pull mysql 2.在/data下新建文件夹mysql,进入 ...
- 阀值化 threshold
OpenCV中的阈值(threshold)函数: threshold 的运用. C++: double threshold(InputArray src, OutputArray dst, doubl ...
- 【14】PNG,GIF,JPG的区别及如何选
[14]PNG,GIF,JPG的区别及如何选 GIF: 8位像素,256色 无损压缩 支持简单动画 支持boolean透明 适合简单动画 JPEG: 颜色限于256 有损压缩 可控制压缩质量 不支持透 ...
- Chrome 开发者工具(DevTools)中所有快捷方式列表(已整理)
Chrome 开发者工具(DevTools)中所有快捷方式列表(已整理) 前言 Chrome DevTools提供了一些内置的快捷键,开发者利用这些快捷键可以节省常工作中很多日的开发时间.下面列出了每 ...