noj 2069 赵信的往事 [yy题 无限gcd]
Accepted
|
31MS
|
224K
|
1351Byte
|
2014-11-13 13:32:56.0
|
坑爹的无限gcd,,,尼玛想好久,原来要x对y算一次,y再对x算一次,,,
赵信的往事
总提交 : 20 测试通过 : 2
描述
赵信——德玛西亚的总管,可谓一人之下,万人之上。但谁能想到,他以前在诺克萨斯的角斗场过的是怎样的生活?
那时,成千上万的奴隶或战俘被抓进角斗场,通过血腥的杀戮供贵族们取乐。所以,为了活下去,除了自身的实力之外,拉帮结派也是必不可少的。显然,这样的事只可能发生在互相信赖的人的中间,而在当时,人们互相信赖的标准却很奇怪——每个人都有一个编号,若两个人可以相互信赖,那么当且仅当这两个编号的素因子集合相同。
那么问题来了:
现在有三个人想组团,请问他们能相互信赖么?
输入
先输入一个正整数T,表示共有T组测试样例,1≤T≤10000。
对于每一个测试样例,输入三个正整数,对于第i个数pi,表示第i个人的编号(1≤pi≤109)。
输出
对于每组样例,如果可以可以成功组团,则输出“YES”,否则输出“NO”。
样例输入
2
3 6 9
3 9 27
样例输出
NO
YES
提示
对于样例一,6的素因子集合为{2,3},与其他人不同,所以不行;
对于样例二,所有数的素因子集合均为{3},因此可以组团。
题目来源
yuman
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<set>
#define maxi(a,b) (a)>(b)?(a):(b)
#define mini(a,b) (a)<(b)?(a):(b)
#define N 1000005
#define mod 10000
#define ll long long using namespace std; int T;
int flag;
int a[]; int gcd(int x,int y)
{
if(y==)
return x;
return gcd(y,x%y);
} void ini()
{
flag=;
scanf("%d%d%d",&a[],&a[],&a[]);
//printf("%d %d %d\n",a[0],a[1],a[2]);
sort(a,a+);
} void cal(int x,int y)
{
int g;
if(x== && y==) return;
g=gcd(x,y);
x/=g;
y/=g;
if(x== && y==) return;
else if(g== && y%x!=){
flag=;return;
}
else{
cal(x,g);
}
return;
//}
} void solve()
{
// printf(" sss\n");
cal(a[],a[]);
cal(a[],a[]);
if(flag==) return;
// printf(" sss2\n");
cal(a[],a[]);
cal(a[],a[]);
} void out()
{
//printf(" oooo\n");
if(flag==){
printf("YES\n");
}
else{
printf("NO\n");
}
} int main()
{
// freopen("data.in","r",stdin);
scanf("%d",&T);
while(T--)
// while(scanf("%I64d",&n)!=EOF)
{
ini();
solve();
out();
}
return ;
}
noj 2069 赵信的往事 [yy题 无限gcd]的更多相关文章
- [YY题]HDOJ5288 OO’s Sequence
题意:求这个式子 $\sum \limits_{i=1}^{n} \sum \limits_{j=1}^{m} f(i, j) mod (10^9 + 7)$ 的值 就是对每个区间[i, j]枚举区间 ...
- NOJ 1643 阶乘除法(YY+小技巧)
[1643] 阶乘除法 时间限制: 5000 ms 内存限制: 65535 K 问题描述 输入两个正整数 n, m,输出 n!/m!,其中阶乘定义为 n!= 1*2*3*...*n (n>=1) ...
- cf 215 C. Crosses yy题
链接:http://codeforces.com/problemset/problem/215/C C. Crosses time limit per test 2 seconds memory li ...
- [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)
题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...
- 【Luogu】P1072Hankson的趣味题(gcd)
这题真TM的趣味. 可以说我的动手能力还是不行,想到了算法却写不出来.以后说自己数论会GCD的时候只好虚了…… 我们首先这么想. x与a0的最大公约数为a1,那么我们把x/=a1,a0/=a1之后,x ...
- [俺们学校的题]伪.GCD
GCD 题面: 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 思路: 首先两个数gcd(x,y)=p为质数,那么令x=k1*p,y=k2*p,由于是最 ...
- CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)
http://codeforces.com/problemset/problem/992/B 题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...
- 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)
洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...
- 【HDU5512】 2015沈阳赛区D题 规律题(GCD)
第一篇博客,就从一个比较简单的题目入手吧! 题目: [HDU5512] 题意: 有n个塔,编号为1~n, 编号为a,b的塔已经维修好,此外其他的塔都需要维修.塔的维修是有顺序的,每次只能维修编号为k ...
随机推荐
- 验证IP端与数据库Ip端是否重复!!!
select COUNT(id) from house_info_config hic where (hic.ip_start <![CDATA[<=]]> #{ipend} AND ...
- Java语言的特点和特性
1. Java语言的主要特点: 1. 跨平台性 所谓的跨平台性,是指软件可以不受计算机硬件和操作系统的约束而在任意计算机环境下正常运行.这是软件发展的趋势和编程人员追求的目标.之所以这样说,是因为计算 ...
- HDU-1009-肥鼠交易
这题是一道简单的可拆分的贪心题目,需要注意的是,我们定义的结构体里面都应该用double类型, 或者float类型,不然两个int相除,就失去了精度(强转也可以). #include <cstd ...
- 【数论 dp】2048
考场上一个DFS优化乱加就对了一个无解的点 题目描述 给定一个长度为 n 的数列,在这个数列中选取一个子序列使得这个子序列中的数能合出2048 对于合并操作,可以选择这个序列中的任意两个数进行合并,当 ...
- html中footer如何一直保持在页底
最近在开发博客过程中,遇到有些body的height是比window的height要低的,然后就出现了footer在页面中间的尴尬样子.那么这种情况怎么解决呢: 首先,写一个footer标签: < ...
- String中indexof函数的用法
int indexOf(int ch) 返回指定字符在此字符串中第一次出现处的索引. int indexOf(int ch, int fromIndex) 从指定的索引开始搜索,返回在此字符串中第一次 ...
- 非memory空间有地址分配
对于非memory空间有地址分配,是由于有寄存器配置,比如AHB.APB.一些外设.
- ASP.NET使用Memcached高缓存实例的初级介绍
Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提供动态.数据库驱动网站的速度.Memcached ...
- 剑指Offer(书):树的子结构
题目:输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 分析:关于二叉树大部分适应于递归结构. public boolean HasSubtree(TreeN ...
- BZOJ 4557: [JLoi2016]侦察守卫
题目大意:每个点有一个放置守卫的代价,同时每个点放置守卫能覆盖到的距离都为d,问覆盖所有给定点的代价是多少. 题解: 树形DP f[x][y]表示x子树中所有点都已经覆盖完,并且x还能向上覆盖y层的最 ...