Accepted
31MS
  224K
1351Byte
2014-11-13 13:32:56.0

坑爹的无限gcd,,,尼玛想好久,原来要x对y算一次,y再对x算一次,,,

赵信的往事

时间限制(普通/Java) : 1000 MS/ 3000 MS          运行内存限制 : 65536 KByte
总提交 : 20            测试通过 : 2

描述

赵信——德玛西亚的总管,可谓一人之下,万人之上。但谁能想到,他以前在诺克萨斯的角斗场过的是怎样的生活?

那时,成千上万的奴隶或战俘被抓进角斗场,通过血腥的杀戮供贵族们取乐。所以,为了活下去,除了自身的实力之外,拉帮结派也是必不可少的。显然,这样的事只可能发生在互相信赖的人的中间,而在当时,人们互相信赖的标准却很奇怪——每个人都有一个编号,若两个人可以相互信赖,那么当且仅当这两个编号的素因子集合相同。

那么问题来了:

现在有三个人想组团,请问他们能相互信赖么?

输入

先输入一个正整数T,表示共有T组测试样例,1≤T≤10000。

对于每一个测试样例,输入三个正整数,对于第i个数pi,表示第i个人的编号(1≤pi≤109)。

输出

对于每组样例,如果可以可以成功组团,则输出“YES”,否则输出“NO”。

样例输入

2
3 6 9
3 9 27

样例输出

NO
YES

提示

对于样例一,6的素因子集合为{2,3},与其他人不同,所以不行;

对于样例二,所有数的素因子集合均为{3},因此可以组团。

题目来源

yuman

 #include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<string>
#include<iostream>
#include<algorithm>
#include<set>
#define maxi(a,b) (a)>(b)?(a):(b)
#define mini(a,b) (a)<(b)?(a):(b)
#define N 1000005
#define mod 10000
#define ll long long using namespace std; int T;
int flag;
int a[]; int gcd(int x,int y)
{
if(y==)
return x;
return gcd(y,x%y);
} void ini()
{
flag=;
scanf("%d%d%d",&a[],&a[],&a[]);
//printf("%d %d %d\n",a[0],a[1],a[2]);
sort(a,a+);
} void cal(int x,int y)
{
int g;
if(x== && y==) return;
g=gcd(x,y);
x/=g;
y/=g;
if(x== && y==) return;
else if(g== && y%x!=){
flag=;return;
}
else{
cal(x,g);
}
return;
//}
} void solve()
{
// printf(" sss\n");
cal(a[],a[]);
cal(a[],a[]);
if(flag==) return;
// printf(" sss2\n");
cal(a[],a[]);
cal(a[],a[]);
} void out()
{
//printf(" oooo\n");
if(flag==){
printf("YES\n");
}
else{
printf("NO\n");
}
} int main()
{
// freopen("data.in","r",stdin);
scanf("%d",&T);
while(T--)
// while(scanf("%I64d",&n)!=EOF)
{
ini();
solve();
out();
}
return ;
}

noj 2069 赵信的往事 [yy题 无限gcd]的更多相关文章

  1. [YY题]HDOJ5288 OO’s Sequence

    题意:求这个式子 $\sum \limits_{i=1}^{n} \sum \limits_{j=1}^{m} f(i, j) mod (10^9 + 7)$ 的值 就是对每个区间[i, j]枚举区间 ...

  2. NOJ 1643 阶乘除法(YY+小技巧)

    [1643] 阶乘除法 时间限制: 5000 ms 内存限制: 65535 K 问题描述 输入两个正整数 n, m,输出 n!/m!,其中阶乘定义为 n!= 1*2*3*...*n (n>=1) ...

  3. cf 215 C. Crosses yy题

    链接:http://codeforces.com/problemset/problem/215/C C. Crosses time limit per test 2 seconds memory li ...

  4. [NOIP2009] $Hankson$ 的趣味题 (数论,gcd)

    题目链接 Solution 此题,用到的结论都是比较浅显的,但是,我竟然没想到反过来枚举... 只有50分... 被自己蠢哭... 结论比较浅显: 1.对于两个正整数\(a\),\(b\),设 \(g ...

  5. 【Luogu】P1072Hankson的趣味题(gcd)

    这题真TM的趣味. 可以说我的动手能力还是不行,想到了算法却写不出来.以后说自己数论会GCD的时候只好虚了…… 我们首先这么想. x与a0的最大公约数为a1,那么我们把x/=a1,a0/=a1之后,x ...

  6. [俺们学校的题]伪.GCD

    GCD 题面: 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 思路: 首先两个数gcd(x,y)=p为质数,那么令x=k1*p,y=k2*p,由于是最 ...

  7. CodeForces 992B Nastya Studies Informatics + Hankson的趣味题(gcd、lcm)

    http://codeforces.com/problemset/problem/992/B  题意: 给你区间[l,r]和x,y 问你区间中有多少个数对 (a,b) 使得 gcd(a,b)=x lc ...

  8. 【题解】洛谷P1072 Hankson的趣味题 (gcd和lcm的应用)

    洛谷P1072:https://www.luogu.org/problemnew/show/P1072 思路 gcd(x,a0)=a1 lcm(x,b0)=b1→b0*x=b1*gcd(x,b0) ( ...

  9. 【HDU5512】 2015沈阳赛区D题 规律题(GCD)

    第一篇博客,就从一个比较简单的题目入手吧! 题目: [HDU5512] 题意: 有n个塔,编号为1~n,  编号为a,b的塔已经维修好,此外其他的塔都需要维修.塔的维修是有顺序的,每次只能维修编号为k ...

随机推荐

  1. MIPS汇编程序设计——四则运算计算器

    实验目的 运用简单的MIPS实现一个能够整数加减乘除的计算器,同时使自己更加熟悉这些指令吧 MIPS代码 #sample example 'a small calculater’ # data sec ...

  2. ping 不通。无法访问目标主机

    台式机 使用无线网卡  又登录了VPN 有时候访问不了局域网内的主机 解决方案  添加路由即可 window+R 打开运行 输入cmd  然后输入 route add 10.16.1.89 10.13 ...

  3. 第二次团队作业-PANTHER考勤系统需求分析

    这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1 这个作业要求在哪里 https://edu.cnblo ...

  4. 数据库-SQL语法:GROUP BY与HAVING

    注意:select 后的字段,必须要么包含在group by中,要么包含在having 后的聚合函数里. 1. GROUP BY 是分组查询, 一般 GROUP BY 是和聚合函数配合使用. grou ...

  5. tomcat假死现象(转)

    1.1 编写目的 为了方便大家以后发现进程假死的时候能够正常的分析并且第一时间保留现场快照. 1.2编写背景 最近服务器发现tomcat的应用会偶尔出现无法访问的情况.经过一段时间的观察最近又发现有台 ...

  6. POI写入word doc 03 模板的实例

    在使用POI写word doc文件的时候我们必须要先有一个doc文件才行,因为我们在写doc文件的时候是通过HWPFDocument来写的,而HWPFDocument是要依附于一个doc文件的.所以通 ...

  7. 歌乐第二弹:C++九九八十一

    第一弹传送门:极乐净土 二话不说,上代码(注意事项在第一弹里): #include <windows.h> //q前缀为低音,g为高音,s前缀为半音阶 const int q1 = 131 ...

  8. 科普NDIS封包过滤

    闲言:    这个月一直在学习NDIS驱动编程,杂七杂八的资料都看个遍了,做了点笔记,捋捋思路,发上来备忘.    Ps:只是小菜的一点学习笔记,没什么技术含量,不过版主如果觉得对大家稍微有点帮助的话 ...

  9. FTP实验报告

    FTP实验报告 制作人:全心全意 准备工作: linux1:192.168.100.4 关闭防火墙.selinux机制 配置yum源 匿名访问 1.安装vsftpd服务和客户端 [root@local ...

  10. laravel中对加载进行优化

    在laravel中的模型与模型之间创建好关联关系会比较方便的方法 但是我们为了方便,有时也会忽略一些东西,比如: 我们在控制器中把整个一个文章对象传到了模板页面 在一次for循环下, 我们对数据进行了 ...