题意:

思路:单纯形模板

 var a:array[..,..]of double;
idx,idy,q:array[..]of longint;
c:array[..]of double;
n,m,i,j,op,x,y:longint;
eps,mn:double; procedure swap(var x,y:longint);
var t:longint;
begin
t:=x; x:=y; y:=t;
end; procedure pivot(x,y:longint);
var i,j,tot:longint;
tmp:double;
begin
swap(idy[x],idx[y]);
tmp:=a[x,y]; a[x,y]:=/a[x,y];
for i:= to n do
if y<>i then a[x,i]:=a[x,i]/tmp;
tot:=;
for i:= to n do
if (i<>y)and((a[x,i]>eps)or(a[x,i]<-eps)) then
begin
inc(tot); q[tot]:=i;
end;
for i:= to m do
begin
if (x=i)or((a[i,y]<eps)and(a[i,y]>-eps)) then continue;
for j:= to tot do a[i,q[j]]:=a[i,q[j]]-a[x,q[j]]*a[i,y];
a[i,y]:=-a[i,y]/tmp;
end;
end; begin
//assign(input,'uoj179.in'); reset(input);
//assign(output,'uoj179.out'); rewrite(output);
readln(n,m,op);
randomize;
eps:=1e-8;
for i:= to n do read(a[,i]);
for i:= to m do
begin
for j:= to n do read(a[i,j]);
read(a[i,]);
end;
for i:= to n do idx[i]:=i;
for i:= to m do idy[i]:=i+n;
while true do
begin
x:=; y:=;
for i:= to m do
if (a[i,]<-eps)and((x=)or(random()=)) then x:=i;
if x= then break;
for i:= to n do
if (a[x,i]<-eps)and((y=)or(random()=)) then y:=i;
if y= then
begin
writeln('Infeasible');
// close(input);
//close(output);
exit;
end;
pivot(x,y);
end;
while true do
begin
x:=; y:=; mn:=1e15;
for i:= to n do
if a[,i]>eps then begin y:=i; break; end;
if y= then break;
for i:= to m do
if (a[i,y]>eps)and(a[i,]/a[i,y]<mn) then
begin
mn:=a[i,]/a[i,y]; x:=i;
end;
if x= then
begin
writeln('Unbounded');
// close(input);
// close(output);
exit;
end;
pivot(x,y);
end;
writeln(-a[,]::);
if op= then exit;
for i:= to m do
if idy[i]<=n then c[idy[i]]:=a[i,];
for i:= to n do
begin
write(c[i]::);
if i<n then write(' ');
end; //close(input);
//close(output);
end.

【UOJ179】线性规划(单纯形)的更多相关文章

  1. 【UOJ #179】线性规划 单纯形模板

    http://uoj.ac/problem/179 终于写出来了单纯性算法的板子,抄的网上大爷的qwq 辅助线性规划找非基变量时要加个随机化才能A,我也不知道为什么,卡精度吗? 2017-3-6UPD ...

  2. UVA 10498 Happiness(线性规划-单纯形)

    Description Prof. Kaykobad has given Nasa the duty of buying some food for the ACM contestents. Nasa ...

  3. UOJ179 线性规划

    Description 这是一道模板题. 本题中你需要求解一个标准型线性规划: 有\(n\)个实数变量\(x_1,x_2,\cdots,x_n\)和\(m\)条约束,其中第\(i\)条约束形如\(\s ...

  4. 【UOJ#179】线性规划 单纯形

    题目链接: http://uoj.ac/problem/179 Solution 就是单纯形模板题,这篇博客就是存一下板子. Code #include<iostream> #includ ...

  5. UOJ.179.线性规划(单纯形)

    题目链接 这写得还不错:http://www.cnblogs.com/zzqsblog/p/5457091.html 引入基变量\(x_{i+n}\),将约束\(\sum_{i=1}^m a_{ij} ...

  6. 线性规划VB求解

    线性规划VB求解 Rem 定义动态数组 Dim a() As Single, c() As Single, b() As Single, cb() As Single Dim aa() As Sing ...

  7. 机器学习-线性规划(LP)

    线性规划问题 首先引入如下的问题: 假设食物的各种营养成分.价格如下表: Food Energy(能量) Protein(蛋白质) Calcium(钙) Price Oatmeal(燕麦) 110 4 ...

  8. BZOJ 1061: [Noi2008]志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4064  Solved: 2476[Submit][Stat ...

  9. 【置顶】Trotyl's OI tree

    \(\rm thx\):@\(\rm UntilMadow\) ! \(\color{Green}{\rm Pupil}\) :只会一点点 \(\color{blue}{\text{Expert}}\ ...

  10. PKUSC 2022 口胡题解

    \(PKUSC\ 2022\)口胡题解 为了更好的在考试中拿分,我准备学习基础日麻知识(为什么每年都考麻将 啊啊啊) 首先\(STO\)吉老师\(ORZ,\)真的学到了好多 观察标签发现,这套题覆盖知 ...

随机推荐

  1. os模块详解2

    1.os.getenv('HOME')  读取操作系统环境变量HOME的值. 2.os.environ 返回操作系统所有的环境变量. 3.os.environ.setdefault(‘a’,‘b’) ...

  2. RPC之远程过程调用

    一. 简介 将一个函数运行在远程计算机上并且等待获取那里的结果,这个称作远程过程调用(Remote Procedure Call)或者 RPC. RPC是一个计算机通信协议. 1. 类比: 将计算机服 ...

  3. Macbook air 上打开cocoscreator出错

    Error: EROFS: read-only file system, open '/Volumes/Cocos Creator/CocosCreator.app/Contents/Resource ...

  4. #pragma使用分析

    #pragma简介 #pragma用于指示编译器完成一些特定的动作 #pragma所定义的很多指示字是编译器特有的 #pragma在不同的编译器间是不可移植的 预处理器将忽略它不认识的#pragma指 ...

  5. HDU 5391 Zball in Tina Town (打表,水)

    题意: Tina有一个球,它的名字叫zball.zball很神奇,它会每天变大.在第一天的时候,它会变大1倍.在第二天的时候,它会变大2倍.在第n天的时候,它会变大n倍.zball原来的体积是1.Ti ...

  6. DHCP server工作原理

    1.CLIENT首先发出广播的DHCPDISCOVER报文,广播的目的是让DHCP SERVER能够收到这个请求报文.在这个报文中,CLIENT可以在"选项"字段中加入" ...

  7. 【转载】SQL Server 2012 日志传送

    SQL Server 2012 日志传送 一.准备: 数据库为完全恢复模式,并事先做一次完全备份. 共享一个文件夹,主机备份放在这个文件夹,而且客户机有权访问这个共享文件夹. 二.基本配置 1.启动配 ...

  8. node节点的部署

    master点赋予用户权限 [root@mast-1 k8s]# kubectl create clusterrolebinding kubelet-bootstrap \ > --cluste ...

  9. Cycloid Hydraulic Motor Use: Use Failure And Treatment

    The cycloidal hydraulic motor is a small low-speed, high-torque hydraulic motor with a shaft-distrib ...

  10. B6. Concurrent 内存模型与线程交互

    [概述]