题目传送门

题意:很裸,就是求C (n, m) % (p1 * p2 * p3 * .... * pk)

分析:首先n,m<= 1e18, 要用到Lucas定理求大组合数取模,当然p[]的乘积<=1e18不能直接计算,但是pi<=1e5。接下来要知道中国剩余定理,所以先对每个pi计算出bi,注意在中国剩余定理的两数相乘会爆long long,所以用乘法取模,"但是这样的话exgcd返回值如果是负数就会出错,所以乘之前要取模成正的",这句话不是很懂。

收获:老祖宗的智慧结晶一定要学

代码:

/************************************************
* Author :Running_Time
* Created Time :2015/9/15 星期二 13:40:41
* File Name :J.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
ll f[N]; void init(int p) {
f[0] = 1;
for (int i=1; i<=p; ++i) f[i] = f[i-1] * i % p;
} ll pow_mod(ll a, ll x, ll p) {
ll ret = 1;
while (x) {
if (x & 1) ret = ret * a % p;
a = a * a % p;
x >>= 1;
}
return ret;
} ll Lucas(ll n, ll k, ll p) { //C (n, k) % p
ll ret = 1;
while (n && k) {
ll nn = n % p, kk = k % p;
if (nn < kk) return 0;
ret = ret * f[nn] * pow_mod (f[kk] * f[nn-kk] % p, p - 2, p) % p;
n /= p, k /= p;
}
return ret;
} ll multi_mod(ll a, ll b, ll p) { //a * b % p
a = (a % p + p) % p;
b = (b % p + p) % p;
ll ret = 0;
while (b) {
if (b & 1) {
ret += a;
if (ret >= p) ret -= p;
}
b >>= 1;
a <<= 1;
if (a >= p) a -= p;
}
return ret;
} ll ex_GCD(ll a, ll b, ll &x, ll &y) {
if (b == 0) {
x = 1; y = 0; return a;
}
ll d = ex_GCD (b, a % b, y, x);
y -= x * (a / b);
return d;
} ll China(int k, ll *b, ll *m) {
ll M = 1, x, y, ret = 0;
for (int i=1; i<=k; ++i) M *= m[i];
for (int i=1; i<=k; ++i) {
ll w = M / m[i];
ex_GCD (w, m[i], x, y);
ret += multi_mod (multi_mod (x, w, M), b[i], M);
}
return (ret + M) % M;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
ll p[11], b[11];
ll n, m; int k; scanf ("%I64d%I64d%d", &n, &m, &k);
for (int i=1; i<=k; ++i) {
scanf ("%I64d", &p[i]); init (p[i]);
b[i] = Lucas (n, m, p[i]);
}
printf ("%I64d\n", China (k, b, p));
} return 0;
}

  

Lucas+中国剩余定理 HDOJ 5446 Unknown Treasure的更多相关文章

  1. Hdu 5446 Unknown Treasure (2015 ACM/ICPC Asia Regional Changchun Online Lucas定理 + 中国剩余定理)

    题目链接: Hdu 5446 Unknown Treasure 题目描述: 就是有n个苹果,要选出来m个,问有多少种选法?还有k个素数,p1,p2,p3,...pk,结果对lcm(p1,p2,p3.. ...

  2. HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘

    HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k])     0< n,m < 1018 思路:这题基本上算是模版题了 ...

  3. HDU 5446 Unknown Treasure Lucas+中国剩余定理

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 Unknown Treasure 问题描述 On the way to the next se ...

  4. FJNU2018低程A 逃跑路线(Lucas + 中国剩余定理 + LGV定理)题解

    题目描述 n个人在w*h的监狱里面想要逃跑,已知他们的同伙在坐标(bi,h)接应他们,他们现在被关在(ai,1)现在他们必须要到同伙那里才有逃出去的机会,这n个人又很蠢只会从(x,y)->(x+ ...

  5. HDU 5446 Unknown Treasure(lucas + 中国剩余定理 + 模拟乘法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 题目大意:求C(n, m) % M, 其中M为不同素数的乘积,即M=p1*p2*...*pk, ...

  6. hdu 5446 Unknown Treasure 中国剩余定理+lucas

    题目链接 求C(n, m)%p的值, n, m<=1e18, p = p1*p2*...pk. pi是质数. 先求出C(n, m)%pi的值, 然后这就是一个同余的式子. 用中国剩余定理求解. ...

  7. hdu 5446 Unknown Treasure Lucas定理+中国剩余定理

    Unknown Treasure Time Limit: 1500/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  8. hdu 5446 Unknown Treasure lucas和CRT

    Unknown Treasure Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?p ...

  9. 【HDOJ】5446 Unknown Treasure

    1. 题目描述题目很简单,就是求$C(n,m) % M$. 2. 基本思路这是一道应用了众多初等数论定理的题目,因为数据范围较大因此使用Lucas求$C(n,m) % P$.而M较大,因此通过$a[i ...

随机推荐

  1. Python 001- 将URL中的汉字转换为url编码

    很多时候想爬取网页信息,结果出现URL是中文的情况(比如‘耳机'),url的地址编码却是%E8%80%B3%E6%9C%BA,因此需要做一个转换.这里我们就用到了模块urllib. 代码超简单 #-* ...

  2. HDU 6040 Hints of sd0061 nth_element函数

    Hints of sd0061 Problem Description sd0061, the legend of Beihang University ACM-ICPC Team, retired ...

  3. Kubernetes实战阅读笔记--2、架构和部署

    安装Kubernetes “本书准备了4台虚拟机(CentOS 7.0系统)用于部署Kubernetes运行环境,包括一个Etcd.一个Kubernetes Master和三个Kubernetes N ...

  4. NameNode备份策略以及恢复方法

    一.dits和fsimage      首先要提到两个文件edits和fsimage,下面来说说他们是做什么的. 集群中的名称节点(NameNode)会把文件系统的变化以追加保存到日志文件edits中 ...

  5. IOS开发,知识点小结,ios开发中经常使用的宏定义总结

    IOS开发,从应用跳转到用浏览器打开网页: [[UIApplication sharedApplication] openURL:[NSURL URLWithString:@"http:// ...

  6. 命令行唤起xcode模拟器

    1.IOS模拟器列表获取命令 xcrun instruments -s 2.IOS启动模拟器命令 xcrun instruments -w "iPhone 8 (12.1)"

  7. javascript:;用法集锦

    如果是个# ,就会出现跳到顶部的情况,个人收藏的几种解决方法:1:<a href="####"></a> 2:<a href="javasc ...

  8. I2C测试【转】

    本文转载自: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 ...

  9. CentOS 7 安装jdk9

    1.下载jdk9 http://download.oracle.com/otn-pub/java/jdk/9.0.4+11/c2514751926b4512b076cc82f959763f/jdk-9 ...

  10. linux初级学习笔记七:linux用户管理,密码和组命令详解!(视频序号:04_1)

    本节学习的命令: 用户管理命令:useradd,userdel,id,finger,usermod,chsh,chfn,passwd,pwck, 组管理命令:groupadd,groupmod,gro ...