poj1015【DP.......无奈了】
首先,读题,真是一窍不通。后来看完程序的意思,才明白吧。。
题意:
n个人中选m个,条件是取sum|D-P|最小,当有|D-P|相同的时候取|D+P|最大的。然后输出那些m个人的sumD,sumP,最后升序输出m个人的编号。看完题意,想想好像也不难?。。。瞎想想可能会想出来。
然后看了题解:http://blog.csdn.net/lyy289065406/article/details/6671105
说说感觉吧:
可能一开始去想真的会死命地盯着目标“取最小”不放了。先说说题解DP( j , k )的好处吧,用k代表|D-P|的最小,如果我说用k代表|D+P|的最大情况,似乎可行,而且总共范围是[0 , 20],k也就是[0 , 800]这反倒是取消了题解的转换|D-P|的负数,那么状态转化的公式,我们可以看到题解中说了:
“显然,方案dp(j, k)是由某个可行的方案dp(j-1, x)( -20×m ≤ x ≤ 20×m)演化而来的。”
而且这样真的非常完美“存在某个候选人i,i 在方案dp(j-1, x)中没有被选上,且x+V(i) = k。在所有满足该必要条件的dp(j-1, x)中,选出 dp(j-1, x) + S(i) 的值最大的那个,那么方案dp(j-1, x)再加上候选人i,就演变成了方案 dp(j, k)。”
中间的处理也是很清楚的,加一个path[ j ][ k ]去记录编号。如果要考察编号,就是类似这样嘛path[j-1][k-V[path[j][k]]]
那么现在如果说
我把k看成是最大|D+P|,依样画葫芦一下:方案dp(j, k)是由某个可行的方案dp(j-1, x)( 0≤ x ≤ 40×m)演化而来的,“存在某个候选人i,i 在方案dp(j-1, x)中没有被选上,且x+S(i) = k。在所有满足该必要条件的dp(j-1, x)中,选出 dp(j-1, x) + v(i) 的值最小的那个,那么方案dp(j-1, x)再加上候选人i,就演变成了方案 dp(j, k)。”
中间的处理也是很清楚的,加一个path[ j ][ k ]去记录编号。如果要考察编号,就是类似这样嘛path[j-1][k-S[path[j][k]]]
让我去验证一下。
2333333333,后来证明这种想法是不可取的,透析一下j,k,dp[ j ] [ k ],j是人,但其实k是sum(d-p),以及DP[ i ] [ j ] 是sum(d+p),他的比较就是越大越好;那么DP[i][j]就是第i个人辩控差最小的辩控和最大,最后怎么找出来呢?
从两边遍历当辩控和一旦大于等于0的时候出来,取个辩控差最小的时候。
然后就是那样了。这题主要还是01背包的转化,以及DP[ i ][ j ] 的确定,这种还是多练,多搞吧。
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <math.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const double eps=1e-5;
const double pi=acos(-1.0);
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const int N=1e2+7;
int n;
int m;
int dp[25][807];
int path[24][807];
int p[N*2];
int d[N*2];
int s[N*2];
int v[N*2];
bool select(int j,int k,int i,int *v)
{
while(j>0&&path[j][k]!=i){
k-=v[path[j][k]];
j--;
}
return j?0:1;
}
int main()
{
int time=1;
while(cin>>n>>m&&n)
{
int j,k,i;
int *p=new int[n+1];
int *d=new int[n+1];
int *s=new int[n+1];
int *v=new int[n+1];
memset(dp,-1,sizeof(dp));
memset(path,0,sizeof(path));
for(i=1;i<=n;i++)
{
cin>>p[i]>>d[i];
s[i]=p[i]+d[i];
v[i]=p[i]-d[i];
}
int fix=m*20;
dp[0][fix]=0;
for(j=1;j<=m;j++)
for(k=0;k<=2*fix;k++)
{
if(dp[j-1][k]>=0)
{
for(i=1;i<=n;i++)
if(dp[j][k+v[i]]<dp[j-1][k]+s[i])
{
if(select(j-1,k,i,v))
{
dp[j][k+v[i]]=dp[j-1][k]+s[i];
path[j][k+v[i]]=i;
}
}
}
}
for(k=0;k<=fix;k++)
if(dp[m][fix-k]>=0||dp[m][fix+k]>=0)
break;
int div=dp[m][fix-k]>dp[m][fix+k]?(fix-k):(fix+k);
cout<<"Jury #"<<time++<<endl;
printf("Best jury has value %d for prosecution and value %d for defence\n",(dp[m][div]+div-fix)/2,(dp[m][div]-div+fix)/2);
// cout<<"Best jury has value ";
// cout<<(dp[m][div]+div-fix)/2<<" for prosecution and value ";
// cout<<(dp[m][div]-div+fix)/2<<" for defence:"<<endl;
/*int id[N<<1];
for(i=0,j=m,k=div;i<m;i++){
id[i]=path[j][k];
k-=v[id[i]];
j--;
}
sort(id,id+m);
for(i=0;i<m;i++)
cout<<" "<<id[i];*/
cout<<endl;
}
return 0;
}
poj1015【DP.......无奈了】的更多相关文章
- POJ1015 DP
Jury Compromise Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 28927 Accepted: 7676 ...
- NOIP2018 模拟赛(二十二)雅礼NOI
Preface 这次的题目都是NOI+的题,所以大家的分数都有点惨烈. 依靠T1大力骗分水到Rank2 所以想看正解的话看这里吧 A. 「雅礼NOI2018模拟赛(一) Day1」树 看一眼题目感觉十 ...
- POJ1015 && UVA - 323 ~Jury Compromise(dp路径)
In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting of ...
- poj1015 正解--二维DP(完全背包)
题目链接:http://poj.org/problem?id=1015 错误解法: 网上很多解法是错误的,用dp[i][j]表示选择i个人差值为j的最优解,用path[i][j]存储路径,循环次序为“ ...
- poj1015陪审团——DP+路径记录
题目:http://poj.org/problem?id=1015 DP的第一维是选了几个人,第二维是当前D与P的差值,而值存的是当前D与P的和: 技巧1:通过平移避免负角标,即代码中的fix: 技巧 ...
- $POJ1015\ Jury\ Compromise\ Dp$/背包
洛谷传送门 $Sol$ 这是一道具有多个“体积维度”的$0/1$背包问题. 把$N$个候选人看做$N$个物品,那么每个物品有如下三种体积: 1.“人数”,每个候选人的“人数”都是$1$,最终要填满容积 ...
- POJ-1015 Jury Compromise(dp|01背包)
题目: In Frobnia, a far-away country, the verdicts in court trials are determined by a jury consisting ...
- POJ1015陪审团(Jury Compromise)——dp+路径记录
题目:http://poj.org/problem?id=1015 差值是有后效性的,所以“转化为可行性”,开一维记录“能否达到这个差值”. 当然可以开两维分别记录 a 和 b,但 “值只是0或1” ...
- bzoj3380: [Usaco2004 Open]Cave Cows 1 洞穴里的牛之一(spfa+状压DP)
数据最多14个有宝藏的地方,所以可以想到用状压dp 可以先预处理出每个i到j的路径中最小权值的最大值dis[i][j] 本来想用Floyd写,无奈太弱调不出来..后来改用spfa 然后进行dp,这基本 ...
随机推荐
- BZOJ 题目1036: [ZJOI2008]树的统计Count(Link Cut Tree,改动点权求两个最大值和最大值)
1036: [ZJOI2008]树的统计Count Time Limit: 10 Sec Memory Limit: 162 MB Submit: 8421 Solved: 3439 [Submi ...
- memcached优化方法
工作原理 基本概念:slab,page.chunk. slab,是一个逻辑概念. 它是在启动memcached实例的时候预处理好的,每一个slab相应一个chunk size.也就是说 ...
- 【LeetCode-面试算法经典-Java实现】【010-Regular Expresssion Matching(正則表達式匹配)】
[010-Regular Expresssion Matching(正則表達式匹配)] [LeetCode-面试算法经典-Java实现][全部题目文件夹索引] 原题 Implement regular ...
- Python中ConfigParser模块应用
Python中ConfigParser模块应用 Python的ConfigParser模块定义了3个对INI文件进行操作的类 RawConfigParser.ConfigParser和SafeConf ...
- HDOJ How many ways?? 2157【矩阵高速幂】
How many ways? ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- struts(转)
配置文件的优先级 在struts2中一些配置(比如常量)可以同时在struts-default.xml(只读性),strtus-plguin.xml(只读性),struts.xml,struts.pr ...
- v-model指令及其修饰符
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- appium部分api
转自:http://www.aichengxu.com/view/41510 使用的语言是java,appium的版本是1.3.4,java-client的版本是java-client-2.1.0,建 ...
- angularjs开发常见问题-2(angularjs内置过滤器)
在angular中内置了几个经常使用的filter,能够简化我们的操作. 过滤器使用 '|' 符号,概念有点相似于linux中的管道. 1.filter (过滤) filter能够依据条件过滤数据.样 ...
- Javascript正则中的exec和match
分几种情况说明 1.假设re中不是全局的也就是不带g var str = "cat3 hat4"; var re = /\w+\d/; var ex = re.exec(str); ...