Lucky7

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 933    Accepted Submission(s): 345

Problem Description
When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortunately fall into the sea. While it was dying, seven dolphins arched its body and sent it back to the shore. It is said that ?? used to surrounded by 7 candles when he faced a extremely difficult problem, and always solve it in seven minutes. 
?? once wrote an autobiography, which mentioned something about himself. In his book, it said seven is his favorite number and he thinks that a number can be divisible by seven can bring him good luck. On the other hand, ?? abhors some other prime numbers and thinks a number x divided by pi which is one of these prime numbers with a given remainder ai will bring him bad luck. In this case, many of his lucky numbers are sullied because they can be divisible by 7 and also has a remainder of ai when it is divided by the prime number pi.
Now give you a pair of x and y, and N pairs of ai and pi, please find out how many numbers between x and y can bring ?? good luck.
 
Input
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers three intergers n, x, y(0<=n<=15,0<x<y<1018) on a line where n is the number of pirmes. 
Following on n lines each contains two integers pi, ai where pi is the pirme and ?? abhors the numbers have a remainder of ai when they are divided by pi. 
It is guranteed that all the pi are distinct and pi!=7. 
It is also guaranteed that p1*p2*…*pn<=1018 and 0<ai<pi<=105for every i∈(1…n).
 
Output
For each test case, first output "Case #x: ",x=1,2,3...., then output the correct answer on a line.
 
Sample Input
2
2 1 100
3 2
5 3
0 1 100
 
Sample Output
Case #1: 7
Case #2: 14

Hint

For Case 1: 7,21,42,49,70,84,91 are the seven numbers.
For Case2: 7,14,21,28,35,42,49,56,63,70,77,84,91,98 are the fourteen numbers.

好题啊  学到了很多东西...

首先 俄罗斯乘法用于大数取模。中国剩余定理解同模方程组。记住这个解不是唯一的...

容斥原理解决 统计问题

/* ***********************************************
Author :guanjun
Created Time :2016/7/30 13:10:44
File Name :hdu5768.cpp
************************************************ */
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <iomanip>
#include <list>
#include <deque>
#include <stack>
#define ull unsigned long long
#define ll long long
#define mod 90001
#define INF 0x3f3f3f3f
#define maxn 10010
#define cle(a) memset(a,0,sizeof(a))
const ull inf = 1LL << ;
const double eps=1e-;
using namespace std; ll a[],m[];
void ex_gcd(ll a,ll b,ll &d,ll &x,ll &y){
if(!b){d=a;x=1LL;y=0LL;}
else {ex_gcd(b,a%b,d,y,x);y-=x*(a/b);}
}
ll mult(ll a,ll k,ll m){
ll res=;
while(k){
if(k&1LL)res=(res+a)%m;
k>>=;
a=(a<<)%m;
}
return res;
}
ll china(int n,ll *a,ll *m){
ll M=,d,y,x=;
for(int i=;i<n;i++)M*=m[i];
for(int i=;i<n;i++){
ll w=M/m[i];
ex_gcd(m[i],w,d,d,y);
x=(x+mult(y,mult(w,a[i],M),M))%M;
}
return (x+M)%M;
}
ll p[],yu[];
int n;
ll get_ans(ll x){
if(x==)return ;
ll ans=;
int st=(<<n);
for(int i=;i<st;i++){
int cnt=;
ll cur=;
m[cnt]=;a[cnt]=;
cur*=;cnt++;
for(int j=;j<n;j++){
if(i&(<<j)){
m[cnt]=p[j];
a[cnt]=yu[j];
cnt++;
cur*=p[j];
}
}
ll tmp=china(cnt,a,m);
if(tmp>x)continue;
if(cnt&)ans+=(x-tmp)/cur+;
else ans-=(x-tmp)/cur+;
}
//cout<<ans<<endl;
return ans+x/;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
//freopen("out.txt","w",stdout);
int T,t;
ll l,r;
cin>>T;
for(int t=;t<=T;t++){
scanf("%d %I64d %I64d",&n,&l,&r);
for(int i=;i<n;i++)
scanf("%I64d %I64d",&p[i],&yu[i]);
printf("Case #%d: %I64d\n",t,get_ans(r)-get_ans(l-));
}
return ;
}

HDU5768Lucky7的更多相关文章

  1. HDU5768Lucky7(中国剩余定理+容斥定理)(区间个数统计)

    When ?? was born, seven crows flew in and stopped beside him. In its childhood, ?? had been unfortun ...

随机推荐

  1. ionic提供的配色方案

    .light #ffffff .stable #f8f8f8 .positive #387ef5 .calm #11c1f3 .balanced #33cd5f .energized #ffc900 ...

  2. luogu 2257 YY的GCD

    题目描述: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对. 题解: 代码: #include<cstdio> # ...

  3. KBE实践——登录案例

    目录 服务器 ``` void maini(){ printf("hello world"); } ``` 最小资产库创建 entity配置 实体的Python实现 创建第一个空间 ...

  4. Python数据类型方法

    Python认为一切皆为对象:比如我们初始化一个list时: li = list('abc') 实际上是实例化了内置模块builtins(python2中为__builtin__模块)中的list类: ...

  5. ResNet,DenseNet

    目录 ResNet BOOM Why call Residual? 发展史 Basic Block Res Block ResNet-18 DenseNet ResNet 确保20层能训练好的前提下, ...

  6. stark组件之添加、修改页面内容搭建(七)

    如何快速的进行数据的添加以及修改呢?modelform来实现是可以达到效果的,在这里就是应用了modelform,每一个表都不同,所以需要创建不同的modelform. def get_model_f ...

  7. 11-看图理解数据结构与算法系列(B树的删除)

    删除操作 删除操作比较复杂,主要是因为删除的项可能在叶子节点上也可能在非叶子节点上,而且删除后可能导致不符合B树的规定,这里暂且称之为导致B树不平衡,于是要进行一些合并.左旋.右旋等操作,使之符合B树 ...

  8. git详细说明

    https://www.cnblogs.com/qcloud1001/p/9796750.html

  9. 582. Kill Process

    Problem statement: Given n processes, each process has a unique PID (process id) and its PPID (paren ...

  10. hdu 4325

    #include<stdio.h>//数据弱线段树延迟更新水过 #define N 100100 struct node { int x,y,yanchi,num; }a[N*4]; vo ...