题意:

给出一个树,覆盖树上某一个点的花费为w[i],求树上每一条边至少有一个点覆盖的最小花费。

细节:

1.一条边的两端可以均被覆盖,但是不能存在一条边的两端都不被覆盖。

2.可能存在

分析:

对于一对儿子和父亲节点来说,要么儿子覆盖父亲不覆盖,父亲覆盖儿子不覆盖,或者是两者均被覆盖,所以不难发现对于父亲节点来说,若其被覆盖,则它的所有子孙可以被覆盖也可以不被覆盖,若其不被覆盖,则它的子孙必须可以被全部覆盖。

所以状态变得显然:dp[u][0/1] 表示节点 u 是否被覆盖的最小花费

再根据上方的分析条件转移如下:

dp[u][1] = ∑ min( dp[v][0] , dp[v][1] )

dp[u][0] = ∑ dp[v][1]

代码

#include<bits/stdc++.h>
#define MAXN 1505
using namespace std; int f[MAXN][2], n;
vector<int> Right[MAXN]; void dfs(int u, int fa){
f[u][0]=0, f[u][1]=1;
for (int i=0; i<Right[u].size(); i++) {
int v=Right[u][i];
if (v==fa) continue;
dfs(v, u);
f[u][0]+=f[v][1];
f[u][1]+=min(f[v][0], f[v][1]);
}
} int main(){
scanf("%d", &n);
for (int i=1, x, num; i<=n; i++) {
scanf("%d%d", &x, &num);
for (int j=1, y; j<=num; j++) {
scanf("%d", &y);
Right[x].push_back(y);
Right[y].push_back(x);
}
}
dfs(1, -1);
printf("%d\n", min(f[root][0], f[root][1]));
return 0;
}

Ps:

此题与 DAY2T344 分算法十分雷同,但是我死在了考场的一线上……

洛谷2016 战略游戏 (0/1状态的普通树形Dp)的更多相关文章

  1. $loj10156/$洛谷$2016$ 战略游戏 树形$DP$

    洛谷loj Desription Bob 喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的方法.现在他有个问题. 现在他有座古城堡,古城堡的路形成一棵树.他要在这棵树的节点上放置最少数 ...

  2. 洛谷 2016 战略游戏(树形DP)

    题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得这些士兵能 ...

  3. 洛谷P2016战略游戏

    传送门啦 战略游戏这个题和保安站岗很像,这个题更简单,这个题求的是士兵人数,而保安站岗需要求最优价值. 定义状态$ f[u][0/1] $ 表示 $ u $ 这个节点不放/放士兵 根据题意,如果当前节 ...

  4. [洛谷P2016] 战略游戏 (树形dp)

    战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的士兵,使得 ...

  5. 洛谷P2016 战略游戏

    P2016 战略游戏 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目 ...

  6. 【洛谷P2016战略游戏】

    树形dp的经典例题 题目描述 Bob喜欢玩电脑游戏,特别是战略游戏.但是他经常无法找到快速玩过游戏的办法.现在他有个问题. 他要建立一个古城堡,城堡中的路形成一棵树.他要在这棵树的结点上放置最少数目的 ...

  7. 洛谷 P2016 战略游戏

    题意简述简述 求一棵树的最小点覆盖 题解思路 树形DP dp[i][0]表示第i个点覆盖以i为根的子树的最小值,且第i个点不放士兵 dp[i][1]表示第i个点覆盖以i为根的子树的最小值,且第i个点放 ...

  8. 洛谷AT2046 Namori(思维,基环树,树形DP)

    洛谷题目传送门 神仙思维题还是要写点东西才好. 树 每次操作把相邻且同色的点反色,直接这样思考会发现状态有很强的后效性,没办法考虑转移. 因为树是二分图,所以我们转化模型:在树的奇数层的所有点上都有一 ...

  9. 2018.09.14 洛谷P3931 SAC E#1 - 一道难题 Tree(树形dp)

    传送门 简单dp题. f[i]表示以i为根的子树被割掉的最小值. 那么有: f[i]=min(∑vf[v],dist(i,fa))" role="presentation" ...

随机推荐

  1. 自己写一个websocket

    import socket, base64, hashlib sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.setsock ...

  2. Codeforces Round #544 (Div. 3) C. Balanced Team

    链接:https://codeforces.com/contest/1133/problem/C 题意: 给n个数, 在这n个数中选最多n个数,来组成一个队伍. 保证这n个数的最大最小差值不大于5. ...

  3. 洛谷 P4219 [BJOI2014]大融合

    查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...

  4. JSP与Servlet的编解码

    一.java web中涉及编解码的地方 (1)浏览器端向后台发起请求时:URL.Cookie.Parameter: (2)后台响应返回数据时:页面编码,数据库数据编码:

  5. 将picpick汉化及矩形截屏

  6. css新奇技术及其未来发展

    1.图像替换技术: 图像替换技术是指使用图像替换页面中文本的功能,类似与在页面中插入图像,只是这种方法更为方便,易于代码管理.通常来说,设计者习惯使用有意义的图像去替换一些标题,logo和某些特定的页 ...

  7. Java GUI 基础组件

    1.JLabel  标签 构造函数: JLabel() JLabel(String text) JLabel(String text,int align)     //第二个参数设置文本的对齐方式,常 ...

  8. CF963A Alternating Sum

    思路:利用周期性转化为等比数列求和. 注意当a != b的时候 bk * inv(ak) % (109 + 9)依然有可能等于1,不知道为什么. 实现: #include <bits/stdc+ ...

  9. 关于对象.style currentstyle 的区别

    对象.style的方式只能获取行内写法的样式,但是外部引入的或者写在head里面的就无法获取,只能用currentstyle.

  10. Oracle体系结构总览

    第一篇 Oracle架构总览 先让我们来看一张图   这张就是Oracle 9i的架构全图.看上去,很繁杂.是的,是这样的.现在让我们来梳理一下: 一.数据库.表空间.数据文件 1.数据库 数据库是数 ...