题链

http://www.lydsy.com/JudgeOnline/problem.php?id=1084

Description

这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大。注意:选出的k个子矩阵

不能相互重叠。

Input

第一行为n,m,k(1≤n≤100,1≤m≤2,1≤k≤10),接下来n行描述矩阵每行中的每个元素的分值(每个元素的

分值的绝对值不超过32767)。

Output

只有一行为k个子矩阵分值之和最大为多少。

Sample Input

3 2 2

1 -3

2 3

-2 3

Sample Output

9

题解

注意到m<=2,那么可以分类讨论:

(1)当m1时,设d1 [ i ] [k]为从考虑前i行找到k个子矩阵,转移方程为

$ d1[i][k] = max ( d1[i][k] , d1[j][k-1] + sum[i] - sum[j] ) $

(2)当m2时,设d2 [ i ] [ j ] [ k ] 从考虑第一列前i行,第二列前j行找到k个子矩阵,转移方程为

$ d2[i][j][k]=max(d2[i][j][k],d2[x][j][k-1]+s1[i]-s1[x]);$

$ d2[i][j][k]=max(d2[i][j][k],d2[i][x][k-1]+s2[j]-s2[x]);$

$ d2[i][j][k]=max(d2[i][j][k],d2[x][x][k-1]+s1[i]-s1[x]+s2[j]-s2[x]);$

参考代码

#include<queue>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define ll long long
#define inf 1000000000
#define mod 1000000007
using namespace std;
int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-') f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
void Out(ll a) {
if(a<0) putchar('-'),a=-a;
if(a>=10) Out(a/10);
putchar(a%10+'0');
}
const int N=105;
int d1[N][15],d2[N][N][15];
int sum[N];
int s1[N],s2[N];
int main(){
int n=read(),m=read(),K=read();
if(m==1){
for(int i=1;i<=n;i++){
int x=read();
sum[i]=sum[i-1]+x;
}
for(int i=1;i<=n;i++) for(int k=1;k<=K;k++){
d1[i][k]=d1[i-1][k];
for(int j=i-1;j>=0;j--)
d1[i][k]=max(d1[i][k],d1[j][k-1]+sum[i]-sum[j]);
}
Out(d1[n][K]);
}
else{
for(int i=1;i<=n;i++){
int x=read(),y=read();
s1[i]=s1[i-1]+x;
s2[i]=s2[i-1]+y;
}
for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) for(int k=1;k<=K;k++){
d2[i][j][k]=max(d2[i-1][j][k],d2[i][j-1][k]);
for(int x=0;x<i;x++) d2[i][j][k]=max(d2[i][j][k],d2[x][j][k-1]+s1[i]-s1[x]);
for(int x=0;x<j;x++) d2[i][j][k]=max(d2[i][j][k],d2[i][x][k-1]+s2[j]-s2[x]);
if(i==j) for(int x=0;x<i;x++)
d2[i][j][k]=max(d2[i][j][k],d2[x][x][k-1]+s1[i]-s1[x]+s2[j]-s2[x]);
}
Out(d2[n][n][K]);
}
return 0;
}

【BZOJ 1084】 [SCOI2005]最大子矩阵(DP)的更多相关文章

  1. BZOJ 1084: [SCOI2005]最大子矩阵 DP

    1084: [SCOI2005]最大子矩阵 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1084 Description 这里有一个n* ...

  2. [BZOJ 1084] [SCOI2005] 最大子矩阵 【DP】

    题目链接:BZOJ - 1084 题目分析 我看的是神犇BLADEVIL的题解. 1)对于 m = 1 的情况, 首先可能不取 Map[i][1],先 f[i][k] = f[i - 1][k];   ...

  3. bzoj 1084: [SCOI2005]最大子矩阵【dp】

    分情况讨论,m=1的时候比较简单,设f[i][j]为到i选了j个矩形,前缀和转移一下就行了 m=2,设f[i][j][k]为1行前i个,2行前j个,一共选了k个,i!=j的时候各自转移同m=1,否则转 ...

  4. BZOJ 1084 [SCOI2005]最大子矩阵 - 动态规划

    传送门 题目大意: 从矩阵中取出k个互不重叠的子矩阵,求最大的和. 题目分析: 对于m=1,直接最大m子段和. 对于m=2: \(dp[i][j][k]\)表示扫描到第一列i和第2列j时选取了k个矩阵 ...

  5. BZOJ: 1084: [SCOI2005]最大子矩阵

    NICE 的DP 题,明白了题解真是不错. Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1228  Solved: 622[Submit][Stat ...

  6. 【BZOJ 1084】 1084: [SCOI2005]最大子矩阵 (DP)

    1084: [SCOI2005]最大子矩阵 Description 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. Input 第 ...

  7. BZOJ(6) 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3566  Solved: 1785[Submit][Sta ...

  8. 1084: [SCOI2005]最大子矩阵

    1084: [SCOI2005]最大子矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1325  Solved: 670[Submit][Stat ...

  9. Bzoj 1088: [SCOI2005]扫雷Mine (DP)

    Bzoj 1088: [SCOI2005]扫雷Mine 怒写一发,算不上DP的游戏题 知道了前\(i-1\)项,第\(i\)项会被第二列的第\(i-1\)得知 设\(f[i]\)为第一列的第\(i\) ...

  10. 洛谷P2331 [SCOI2005]最大子矩阵 DP

    P2331 [SCOI2005]最大子矩阵 题意 : 这里有一个n*m的矩阵,请你选出其中k个子矩阵,使得这个k个子矩阵分值之和最大.注意:选出的k个子矩阵不能相互重叠. 第一行为n,m,k(1≤n≤ ...

随机推荐

  1. Apache Zeppelin是什么?

    Apache Zeppelin提供了web版的类似ipython的notebook,用于做数据分析和可视化.背后可以接入不同的数据处理引擎,包括spark, hive, tajo等,原生支持scala ...

  2. Hexo瞎折腾系列(4) - 站点首页不显示文章全文

    文章摘要设置 打开主题配置文件 _config.yml 文件,找到如下: # Automatically Excerpt. Not recommend. # Please use <!-- mo ...

  3. 跟我一起玩Win32开发(2):完整的开发流程

    上一篇中我给各位说了一般人认为C++中较为难的东西——指针.其实对于C++,难点当然不局限在指针这玩意儿上,还有一些有趣的概念,如模板类.虚基类.纯虚函数等,这些都是概念性的东西,几乎每一本C++书上 ...

  4. JavaScript禁止键入非法值,只有这些才能被键入

    JavaScript禁止键入非法值,只有这些才能被键入(k==9)||(k==13)||(k==46)||(k==8)||(k==189)||(k==109)||(k==190)||(k==110)| ...

  5. maven编译报错 -source 1.5 中不支持 lambda(或diamond) 表达式,编码 UTF-8 的不可映射字符

    在用maven编译项目是由于项目中用了jdk 1.8, 编译是报错  -source 1.5 中不支持 lambda 表达式. 错误原因: Maven Compiler 插件默认会加 -source ...

  6. NSString 与NSMutableString的区别

      NSString 与NSMutableString的区别    Suppose You have a code like this NSString *s = [[NSString alloc]  ...

  7. 使用libsvm实现文本分类

    @Hcy(黄灿奕) 文本分类,首先它是分类问题,应该对应着分类过程的两个重要的步骤,一个是使用训练数据集训练分类器,另一个就是使用测试数据集来评价分类器的分类精度.然而,作为文本分类,它还具有文本这样 ...

  8. Halcon学习笔记1

    转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...

  9. json-server && axios

    json-server && axios vue2.0项目实战(3)使用axios发送请求 https://www.cnblogs.com/zhouyangla/p/6753673.h ...

  10. 用list去初始化numpy的array数组 numpy的array和python中自带的list之间相互转化

    http://blog.csdn.net/baiyu9821179/article/details/53365476 a=([3.234,34,3.777,6.33]) a为python的list类型 ...