性能优化 java 24 次阅读 · 读完需要 15 分钟 0
摘要: 技术传播的价值,不仅仅体现在通过商业化产品和开源项目来缩短我们构建应用的路径,加速业务的上线速率,也会体现在优秀程序员在工作效率提升、产品性能优化和用户体验改善等小技巧方面的分享,以提高我们的工作能力。
技术传播的价值,不仅仅体现在通过商业化产品和开源项目来缩短我们构建应用的路径,加速业务的上线速率,也会体现在优秀程序员在工作效率提升、产品性能优化和用户体验改善等小技巧方面的分享,以提高我们的工作能力。
从本期开始,我们将邀请来自阿里巴巴各个技术团队的程序员,涵盖中间件、前端、移动开发、大数据和人工智能等多个技术领域,分享他们在工作中的小技巧, 内容力求简短、实用和可操作。
第一期的分享嘉宾,是来自阿里巴巴中间件技术团队的程序员 - 断岭,他是阿里微服务开源项目 Dubbo 的项目组成员,也是Java线上诊断开源项目 Arthas 的负责人。
第一期:理解CPU分支预测,提高代码效率
一、基础概念:
Dubbo: 是一款高性能、轻量级的开源Java RPC框架,提供了三大核心能力:面向接口的远程方法调用,智能容错和负载均衡,以及服务自动注册和发现;
ChannelEventRunnable: Dubbo 里所有网络事件的回调接口;
JMH:即Java Microbenchmark Harness,是专门用于代码微基准测试的工具套件。在性能优化的过程中,可以使用JMH对优化的结果进行量化的分析。
二、需求缘起:
在Stack Overflow上有一个非常著名的问题:为什么处理有序数组要比非有序数组快?从问题的结论来看,是分支预测对代码运行效率的提升起到了非常重要的作用。
现今的CPU是都支持分支预测(branch prediction)和指令流水线(instruction pipeline),这俩的结合可以极大的提高CPU的工作效率,从而提高代码执行效率。但这仅适用于简单的if跳转,但对于Switch跳转,CPU则没有太好的解决办法,因为Switch本质上是据索引,是从地址数组里取地址再跳转。
三、思考和方案假设:
要提高代码执行效率,一个重要的实现原则就是尽量避免CPU把流水线清空,从Stack Overflow上的讨论结果来看,通过提高分支预测的成功率,是可以降低CPU对流水线清空的概率。那么,除了在硬件层面,是否可以考虑代码层面帮CPU把判断提前,来提高代码执行效率呢?
四、方案验证:
在Dubbo的ChannelEventRunnable里有一个Switch来判断channel state。当一个channel建立起来之后,超过99.9%的情况,它的state都是ChannelState.RECEIVED,我们可以考虑,把这个判断提前。
以下通过JMH来验证,把判断提前后是否就可以提高代码执行效率。
率。
public class TestBenchMarks {
public enum ChannelState {
CONNECTED, DISCONNECTED, SENT, RECEIVED, CAUGHT }
@State(Scope.Benchmark)
public static class ExecutionPlan {
@Param({ "1000000" })
public int size;
public ChannelState[] states = null;
@Setup
public void setUp() {
ChannelState[] values = ChannelState.values();
states = new ChannelState[size];
Random random = new Random(new Date().getTime());
for (int i = 0; i < size; i++) {
int nextInt = random.nextInt(1000000);
if (nextInt > 100) {
states[i] = ChannelState.RECEIVED;
} else {
states[i] = values[nextInt % values.length];
}
}
}
}
@Fork(value = 5)
@Benchmark
@BenchmarkMode(Mode.Throughput)
public void benchSiwtch(ExecutionPlan plan, Blackhole bh) {
int result = 0;
for (int i = 0; i < plan.size; ++i) {
switch (plan.states[i]) {
case CONNECTED:
result += ChannelState.CONNECTED.ordinal();
break;
case DISCONNECTED:
result += ChannelState.DISCONNECTED.ordinal();
break;
case SENT:
result += ChannelState.SENT.ordinal();
break;
case RECEIVED:
result += ChannelState.RECEIVED.ordinal();
break;
case CAUGHT:
result += ChannelState.CAUGHT.ordinal();
break;
}
}
bh.consume(result);
}
@Fork(value = 5)
@Benchmark
@BenchmarkMode(Mode.Throughput)
public void benchIfAndSwitch(ExecutionPlan plan, Blackhole bh) {
int result = 0;
for (int i = 0; i < plan.size; ++i) {
ChannelState state = plan.states[i];
if (state == ChannelState.RECEIVED) {
result += ChannelState.RECEIVED.ordinal();
} else {
switch (state) {
case CONNECTED:
result += ChannelState.CONNECTED.ordinal();
break;
case SENT:
result += ChannelState.SENT.ordinal();
break;
case DISCONNECTED:
result += ChannelState.DISCONNECTED.ordinal();
break;
case CAUGHT:
result += ChannelState.CAUGHT.ordinal();
break;
}
}
}
bh.consume(result);
}}
验证说明:
benchSiwtch里是纯Switch判断
benchIfAndSwitch 里用一个if提前判断state是否ChannelState.RECEIVED
Benchmark结果是:
Result "io.github.hengyunabc.jmh.TestBenchMarks.benchSiwtch":
576.745 ±(99.9%) 6.806 ops/s [Average]
(min, avg, max) = (490.348, 576.745, 618.360), stdev = 20.066
CI (99.9%): 569.939, 583.550
Run complete. Total time: 00:06:48
Benchmark (size) Mode Cnt Score Error Units
TestBenchMarks.benchIfAndSwitch 1000000 thrpt 100 1535.867 ± 61.212 ops/s
TestBenchMarks.benchSiwtch 1000000 thrpt 100 576.745 ± 6.806 ops/s
可以看到,提前if判断提高了近3倍的代码效率,这种技巧可以放在性能要求严格的地方。
五、总结:
Switch对于CPU来说难以做分支预测;
某些Switch条件如果概率比较高,可以在代码层设置提前if判断,充分利用CPU的分支预测机制;
原文地址:https://segmentfault.com/a/1190000017063609
性能优化 java 24 次阅读 · 读完需要 15 分钟 0的更多相关文章
- 冒泡排序,冒泡性能优化--java实现
冒泡排序说明: 一次比较两个元素,如果他们的顺序错误就把他们交换过来. 重复地进行直到没有再需要交换,也就是说已经排序完成. 越小的元素会经由交换慢慢“浮”到数列的顶端. 冒泡排序算法的运作如下: 比 ...
- JVM性能优化--Java的垃圾回收机制
一.Java内存结构 1.Java堆(Java Heap) java堆是java虚拟机所管理的内存中最大的一块,是被所有线程共享的一块内存区域,在虚拟机启动时创建.此内存区域的唯一目的就是存放对象实例 ...
- HBase性能优化 Java Api
1. 使用“连接池” 如果每次和Hbase交互时都去新建连接的话,显然是低效率的,HBase也提供类连接池相关的API. 1.1. HTablePool 早期的API中使用它,但很不幸,现在它已经过时 ...
- Android 性能优化(24)*性能工具之「Traceview,dmtracedump」Profiling with Traceview and dmtracedump :记录并查看函数调用栈*
Profiling with Traceview and dmtracedump In this document Traceview Layout Traceview工具界面介绍 T ...
- 【Java】Java-正则匹配-性能优化
Java-正则匹配-性能优化 Java 正则 点_百度搜索 在Java类中如何用正则表达式表示小数点啊?_百度知道 使用Jakarta-ORO库的几个例子 - 小橡树 - ITeye博客 正则表达式以 ...
- C#性能优化实践 资料整理
缓存(Cache)是性能优化中最常用的优化手段.适用的情况是频繁的获取一些数据,而每次获取这些数据需要的时间比较长.这时,第一次获取的时候会用正常的方法,并且在获取之后把数据缓存下来.之后就使用缓存的 ...
- C#性能优化实践【转】
性能主要指两个方面:内存消耗和执行速度.性能优化简而言之,就是在不影响系统运行正确性的前提下,使之运行地更快,完成特定功能所需的时间更短. 本文以.NET平台下的控件产品MultiRow为例,描述C# ...
- RabbitMQ性能优化
修改rabbitmq.config文件 rabbitmq.config文件时rabbitmq的配置文件,他遵守Erlang配置文件定义. rabbitmq.config文件位置: Unix $RABB ...
- C#性能优化实践(转载)
原文地址http://www.infoq.com/cn/articles/C-sharp-performance-optimization?utm_source=infoq&utm_mediu ...
随机推荐
- div里面放img
div里面放img的时候 会出现包裹不住的情况,这个时候 只要将img { width:100%,height:100% },就可以解决问题了
- shell getopts
1, 分类: LINUX getopts命令内置于shell中,可以获取由单个字符所指定的有效命令行参数,单个字符有一个‘ - ’号或‘ + ’号. 简单的说,比如运行命令: iptables -t ...
- string类常用方法3
- 486 Predict the Winner 预测赢家
给定一个表示分数的非负整数数组. 玩家1从数组任意一端拿取一个分数,随后玩家2继续从剩余数组任意一端拿取分数,然后玩家1拿,…….每次一个玩家只能拿取一个分数,分数被拿取之后不再可取.直到没有剩余分数 ...
- (转 )Unity对Lua的编辑器拓展
转 http://blog.csdn.net/ZhangDi2017/article/details/61203505 当前版本的Unity(截至Unity5.5.x)中TextAsset类不支持后缀 ...
- Java入门小知识
软件开发什么是软件? 一系列按照特定顺序组织的计算机数据和指令的集合什么是开发? 制作软件 人机交互 软件的出现实现了人与计算机之间的更好的交互交互方式 图形化界面:这种方式简单直观,使用者 ...
- Android中进程与线程及如何在子线程中操作UI线程
1. Android进程 一个应用程序被启动时,系统默认创建执行一个叫做"main"的线程.这个线程也是你的应用与界面工具包(android.widget和android.view ...
- [Tunny]Git常用命令与入门
[黄映焜/Tunny,20140709] Git 仓库就是那个.git 目录,其中存放的是我们所提交的文档索引内容,Git 可基于文档索引内容对其所管理的文档进行内容追踪,从而实现文档的版本控制..g ...
- IntelliJ IDEA openfire 使用IntelliJ IDEA 部署OPENFIRE 服务端
用MyEclipse部署OF的步骤,网上有很多,可以自行google,这里要记录的是用据说最好用的JAVA编辑器IntelliJ IDEA来部署OF服务端.试了好多下,终于成功了,记录下. 直接上图吧 ...
- UVA 11419 SAM I AM (最小点覆盖,匈牙利算法)
题意:给一个r*c的矩阵,某些格子中可能有一些怪物,可以在一行或一列防止一枚大炮,大炮会扫光整行/列的怪,问最少需要多少炮?输出炮的位置. 思路: 先每行和列都放一个炮,把炮当成点,把怪当成边,一边连 ...