【Luogu】P2220容易题(快速幂)
这题真是“容易”。呵呵呵。
参考题解:xyz32768
代码
#include<cstdio>
#include<map>
#include<algorithm>
#include<cctype>
#define mod 1000000007
using namespace std;
map<long long,bool> vis;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} inline long long mul(long long a,long long b){
long long ret=;
if(b==) return a;
while(b){
if(b&) ret=(ret+a)%mod;
a=(a+a)%mod;
b>>=;
}
return ret;
} inline long long Pow(long long a,long long b){
long long ret=;
if(b==) return a;
while(b){
if(b&) ret=mul(ret,a);
a=mul(a,a);
b>>=;
}
return ret;
} long long s[]; struct Line{
long long x,y;
bool operator <(const Line &a)const{
if(x!=a.x) return x<a.x;
return y<a.y;
}
}w[];
long long tot;
int main(){
freopen("in.txt","r",stdin);
freopen("out1.txt","w",stdout);
long long n=read(),m=read(),q=read();
long long sum;
if(n&) sum=mul((+n)>>,n);
else sum=mul(+n,n>>);
for(long long i=;i<=q;++i) s[i]=sum;
for(long long i=;i<=q;++i) w[i]=(Line){read(),read()};
sort(w+,w+q+);
for(long long i=;i<=q;++i){
long long x=w[i].x;
if(!vis[x]){
vis[x]=;
tot++;
}
}
long long ans=Pow(sum,m-tot);
for(long long i=;i<=q;++i){
long long d=sum;
long long j;
d-=w[i].y;
for(j=i+;w[j].x==w[j-].x;j++){
if(w[j].y==w[j-].y) continue;
d-=w[j].y;
}
d=(d%mod+mod)%mod;
ans=(ans*d)%mod;
i=j-;
}
printf("%lld",ans);
return ;
}
【Luogu】P2220容易题(快速幂)的更多相关文章
- P2220 [HAOI2012]容易题(快速幂)
Describe 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值 ...
- [LOJ#162]模板题-快速幂2
<题目链接> 注意:这可能也是一道模板题. 注意2:$p=998224352$ 注意3:对于$100\%$的数据,$n\leq 5 \times 10^6$ 这个题很启发思路,如果直接快速 ...
- POJ 3641 Pseudoprime numbers (数论+快速幂)
题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...
- P2220 [HAOI2012]容易题【快速幂】
题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定 ...
- Luogu 3390 【模板】矩阵快速幂 (矩阵乘法,快速幂)
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵 ...
- luoguP3390(矩阵快速幂模板题)
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<c ...
- 【模拟题(电子科大MaxKU)】解题报告【树形问题】【矩阵乘法】【快速幂】【数论】
目录: 1:一道简单题[树形问题](Bzoj 1827 奶牛大集会) 2:一道更简单题[矩阵乘法][快速幂] 3:最简单题[技巧] 话说这些题目的名字也是够了.... 题目: 1.一道简单题 时间1s ...
- BZOJ 2510: 弱题( 矩阵快速幂 )
每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...
- (中等) CF 576D Flights for Regular Customers (#319 Div1 D题),矩阵快速幂。
In the country there are exactly n cities numbered with positive integers from 1 to n. In each city ...
- Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂)
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q, ...
随机推荐
- PaaS基础学习(1)
PaaS基础学习(1) PaaS学习笔记目录 PaaS基础学习(1) 在PaaS上开发Web.移动应用(2) PaaS优点与限制(3) 1. 基础单元,一个基础单元就是所研究实体的最小的不可分割的单元 ...
- Eclipse中一直出现 Android SDK resolving error markers
Eclipse中一直出现“Android SDK: resolving error markers”. 此类情况网上有诸多描述以及相应尝试性的解决方法,不久前本人即出现此类情况,尝试多种方案后未能解决 ...
- TFS数据库分离附加经验总结
因TFS数据库已经100多G,所在的服务器D盘已没有空间满足tfs数据库的增长速度,故必须分离复制到其它盘.在分离过程中,先后分离了ReportServer.ReportServerTempDB.Tf ...
- JavaScript 跨域请求
1.最简单通用的做法就是 反向代理 通过nginx搭建一个反向代理服务器,通过将跨域的请求配置成转发:此方法适用于动静分离时,很多跨域请求的情况下: server { listen 8 ...
- (三)SpringMVC之常用注解
SpringMVC的常用注解 注解 说明 @Controller 用于说明这个类是一个控制器 @RequestMapping 用于注释一个控制器类或者控制器类的方法 @RequestParam 用于将 ...
- 最常见的 5 个导致节点重新启动、驱逐或 CRS 意外重启的问题 (文档 ID 1524455.1)
适用于: Oracle Database - Enterprise Edition - 版本 10.1.0.2 到 11.2.0.3 [发行版 10.1 到 11.2]本文档所含信息适用于所有平台 用 ...
- iview 验证 trigger: 'blur,change', 同时加两个,省的每次还想input 还是 select
iview 验证 trigger: 'blur,change', 同时加两个,省的每次还想input 还是 select dataRuleValidate: { name: [{ required: ...
- 火狐浏览器返回不加载JS
火狐浏览器 go(-1),返回后不加载JS,谷歌会加载. 总结: Firefox和Safari在back时不会触发load, ready事件! 解决方法: $(window).unload(funct ...
- 快学UiAutomator创建第一个实例
工具准备 一.准备好java环境(JDK)和安卓环境(SDK.ADT)jdk1.6+ \eclipse\SDK \ADT详情百度,安装java环境 二.打开eclipse 三.创建步骤: 右键新建== ...
- baidumap demo(一)
覆盖物概述 地图上自定义的标注点和覆盖物我们统称为地图覆盖物.您可以通过定制BMKAnnotation和BMKOverlay来添加对应的标注点和覆盖物.地图覆盖物的设计遵循数据与View分离的原则,B ...