这篇博客是从另一位园友那里存的,但是当时忘了写原文的地址,如果有找到原文地址的请评论联系!

Lucas定理解决的问题是组合数取模。数学上来说,就是求 \(\binom n m\mod p\)。(p为素数)

这里\(n,m\)可能很大,比如达到\(10^{15}\),而\(p\)在\(10^9\)以内。显然运用常规的阶乘方法无法直接求解,所以引入Lucas定理。

Lucas定理

把\(n\)和\(m\)写成\(p\)进制数的样子(如果长度不一样把短的补成长的那个的长度):
\(n=(a0a1…ak)p\)
\(m=(b0b1…bk)p\)

那么:
\(\binom n m \equiv \prod _{i=0}^k \binom {a_i} {b_i} \mod p\)

证明
如果把Lucas定理从递归的角度理解,它其实是这样的:
设\(n=ap+b,m=cp+d,(b,d<p,a=\lfloor\frac{n}{p}\rfloor,c=\lfloor \frac{m}{p}\rfloor) \\ \binom n m \equiv \binom a c * \binom b d\)

这个定理的一个很巧妙的证法是通过二项式定理来说明上面的式子是成立的。

首先,对于任意质数\(p\),有:
\((1+x)^p\equiv 1+x^p\mod p\)

其证明可以由费马小定理\((x^p \equiv x \mod p) |p为素数)\)直接得出:
\((1+x)^p\equiv 1+x\)
\(x^p\equiv x\)
所以\((1+x)^p\equiv 1+x \equiv 1+x^p\)

(当然同样也有\((a+b)^p\equiv a^p+b^p \mod p\),具体为什么你可以拆开前面的式子,将其除 \(a^p\) 和 \(b^p\) 项外的所有项的系数好好研究一下(其实就是杨辉三角的第p层),可以发现把对称项系数分别合并后都能整除\(p\))

利用这个性质,我们证明Lucas定理:
\(\begin{aligned} (1+x)^n&=(1+x)^{\lfloor \frac{n}{p}\rfloor *p}(1+x)^b \\ &=(1+x^p)^{\lfloor \frac{n}{p}\rfloor}(1+x)^b \\ &=\sum _{i=0}^k\binom {\lfloor \frac{n}{p}\rfloor} ix^{pi}\sum _{j=0}^k\binom b jx^j \end{aligned}\)

考察等式左右两边xmxm的系数,可以发现:
\(\begin{aligned} 左边&=\binom n m \\ 右边&=\binom {\lfloor \frac{n}{p}\rfloor} i\binom b j,(pi+j=m,j<p) \\ &=\binom {\lfloor \frac{n}{p}\rfloor} {\lfloor \frac{m}{p}\rfloor} \binom b d \end{aligned}\)

所以上面的式子成立,证明完毕。

如果不算预处理什么的,算法时间复杂度为\(O(log_pn)\)。如果能够支持预处理,那么就加一个\(O(p)\),要不就用快速幂,乘上\(O(logp)\)。

Lucas定理详解的更多相关文章

  1. pick定理详解

    一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...

  2. 几何:pick定理详解

    一.概念 假设P的内部有I(P)个格点,边界上有B(P)个格点,则P的面积A(P)为:A(P)=I(P)+B(P)/2-1. 二.说明 Pick定理主要是计算格点多边形(定点全是格点的不自交图形)P的 ...

  3. POJ 1659 Frogs' Neighborhood(可图性判定—Havel-Hakimi定理)【超详解】

    Frogs' Neighborhood Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 9897   Accepted: 41 ...

  4. (转载)--SG函数和SG定理【详解】

    在介绍SG函数和SG定理之前我们先介绍介绍必胜点与必败点吧. 必胜点和必败点的概念:        P点:必败点,换而言之,就是谁处于此位置,则在双方操作正确的情况下必败.        N点:必胜点 ...

  5. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  6. HDU3037 Saving Beans(Lucas定理+乘法逆元)

    题目大概问小于等于m个的物品放到n个地方有几种方法. 即解这个n元一次方程的非负整数解的个数$x_1+x_2+x_3+\dots+x_n=y$,其中0<=y<=m. 这个方程的非负整数解个 ...

  7. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  8. Lucas定理及其应用

    Lucas定理这里有详细的证明. 其实就是针对n, m很大时,要求组合数C(n, m) % p, 一般来说如果p <= 10^5,那么就能很方便的将n,m转化为10^5以下这样就可以按照乘法逆元 ...

  9. Heapsort 堆排序算法详解(Java实现)

    Heapsort (堆排序)是最经典的排序算法之一,在google或者百度中搜一下可以搜到很多非常详细的解析.同样好的排序算法还有quicksort(快速排序)和merge sort(归并排序),选择 ...

随机推荐

  1. CodeForces 219D Choosing Capital for Treeland (树形DP)

    题意:给一个树形图,n个节点,n-1条有向边,要求选一个节点作为根,使需要改变方向的边的数目最少.并输出所有可能作为根的点. 思路: 先随便一个点进行DFS,计算将每棵子树的边全部往下时,所需要的费用 ...

  2. NSCopying协议和copy方法

    不是所有的对象都支持 copy需要继承NSCopying 协议(实现 copyWithZone: 方法)同样,需要继承NSMutableCopying 协议才可以使用mutableCopy(实现 mu ...

  3. 转 在Qt中用QAxObject来操作Excel

    最近写程序中需要将数据输出保存到Excel文件中.翻看<C++ GUI Programming with Qt 4>(Second Edition)发现可以在Qt中运用ActiveX控件, ...

  4. Open Scene Graph:让VS支持不含后缀的头文件

    让VS支持不含后缀的头文件 看OSG源码时,会遇到不含后缀的头文件无定位信息的尴尬,很让人苦恼. 就是单击VS中“工具菜单栏”——>”选项(O)….”如下图所示: 菜单项,弹出选项对话框,单击“ ...

  5. a标签目标链接问题

    1.先确定开始文件和目标文件,例如从css.html开始到body.html 2.确定文件寻找路径,因为css.html的父目录是css,而body.html在body目录下,所以需要先退到上一目录h ...

  6. shell脚本,一个经典题目。

    [root@localhost wyb]# cat zhuijiu.sh #!/bin/bash #.写一个脚本执行后,输入名字,产生随机数01-99之间的数字. #.如果相同的名字重复输入,抓到的数 ...

  7. rhel7.3smb安装配置

    rhel7.3smb安装配置 1.安装 yum -y install samba samba-client cifs-utils 2.配置开机自启动,覆盖原配置文件 systemctl enable ...

  8. 安装ruby开发环境

    如何快速正确的安装 Ruby, Rails 运行环境 对于新入门的开发者,如何安装 Ruby, Ruby Gems 和 Rails 的运行环境可能会是个问题,本页主要介绍如何用一条靠谱的路子快速安装 ...

  9. codevs 数字三角形集结

    添在前面的一句话:初学DP,若有错误,请指出,不能误人子弟,欢迎大家提出意见.水平不高,博客写的比较粗糙,代码也挺丑,请见谅. 最原始的数字三角形: 1220 数字三角形  时间限制: 1 s  空间 ...

  10. (63)zabbix low-level discover zabbix批量部署必备

    1. 概述 <zabbix发现配置>server通过配置好的规则,自动添加host.group.template <zabbix Active agent自动注册>与disco ...